inst/RBD/app.R

library(shiny)
library(ggplot2)
library(Hmisc)
library(agricolae)
library(shinyWidgets)
library(dplyr)
library(rmarkdown)
library(RColorBrewer)
library(gtools)

ui <- fluidPage(
  setBackgroundColor(
    color = c("#ffb9b3", "#ffffff"),
    gradient = "radial",
    direction = c("bottom", "right")
  ),
  titlePanel(
    title = tags$div(tags$b("Two-way Analysis of Variance", style = "color:#000000")),
    windowTitle = "Randomized Block Design"
  ),
  sidebarPanel(
    fileInput("file1", "CSV File (upload in csv format)", accept = c("text/csv", "text/comma-separated-values,text/plain", ".csv")),
    checkboxInput("header", "Header", TRUE),
    uiOutput("var"),
    tags$br(),
    conditionalPanel(
      "$('#trtmeans').hasClass('recalculating')",
      tags$div(tags$b("Loading ...please wait while we are calculating in the background.....please dont press submit button again "), style = "color:green")
    ),
    tags$br(),
    h5(
      tags$div(
        tags$br(),
        "Developed by:",
        tags$br(),
        tags$b("Dr.Pratheesh P. Gopinath"),
        tags$br(),
        tags$b("Assistant Professor,"),
        tags$br(),
        tags$b("Agricultural Statistics,"),
        tags$br(),
        tags$b("Kerala Agricultural University"),
        tags$br(),
        tags$br(),
        "Contribution:",
        tags$br(),
        tags$b("Adarsh V.S."),
        tags$br(),
        tags$b("MSc, Agricultural Statistics"),
        tags$br(),
        tags$br(),
        "post your queries at: pratheesh.pg@kau.in",
        style = "color:#343aeb"
      )
    )
  ),
  mainPanel(
    tabsetPanel(
      type = "tab",
      tabPanel(
        "Analysis.Results",
        tableOutput("trtmeans"),
        conditionalPanel(
          "$('#trtmeans').hasClass('recalculating')",
          tags$div(tags$b("Loading ...please wait while we are calculating in the background.....please dont press submit button again "), style = "color:green")
        ),
        tags$style(type = "text/css", "#trtmeans th,td {border: medium solid #000000;text-align:center}"),
        tags$style(type = "text/css", "#trtmeans td {border: medium solid #000000;text-align:center}"),
        tableOutput("aovSummary"),
        tags$style(type = "text/css", "#aovSummary th,td {border: medium solid #000000;text-align:center}"),
        tags$style(type = "text/css", "#aovSummary td {border: medium solid #000000;text-align:center}"),
        tableOutput("SEM"),
        tags$style(type = "text/css", "#SEM th,td {border: medium solid #000000;text-align:center}"),
        tags$style(type = "text/css", "#SEM td {border: medium solid #000000;text-align:center}"),
        htmlOutput("text"),
        h3(""),
        uiOutput("inference"),
        tableOutput("multi"),
        tags$style(type = "text/css", "#multi th,td {border: medium solid #000000;text-align:center}"),
        tags$style(type = "text/css", "#multi td {border: medium solid #000000;text-align:center}"),
        tableOutput("group"),
        tags$style(type = "text/css", "#group th,td {border: medium solid #000000;text-align:center}"),
        tags$style(type = "text/css", "#group td {border: medium solid #000000;text-align:center}"),
        uiOutput("var1"),
        uiOutput("start_note"),
        tags$br(),
        uiOutput("data_set"), # data set to test,
        tags$br(),
        uiOutput("start_note2"),
        tags$br(),
        tags$br()
      ),
      tabPanel(
        "Plots & Graphs",
        uiOutput("varplot"),
        uiOutput("varboxplot"),
        tags$br(),
        uiOutput("start_note3"),
        plotOutput("boxplot"),
        tags$br(),
        tags$br(),
        uiOutput("image_down"), # image to download
        tags$br(),
        tags$br(),
        tags$br(),
        tags$br()
      )
    )
  )
)
####################
server <- function(input, output, session) {
  csvfile <- reactive({
    csvfile <- input$file1
    if (is.null(csvfile)) {
      return(NULL)
    }
    dt <- read.csv(csvfile$datapath, header = input$header, sep = ",")
    dt
  })

  output$var <- renderUI({
    if (is.null(input$file1$datapath)) {
      return()
    }
    else {
      list(
        numericInput("trt", "Number of Treatments:", 0, min = 2, max = 100),
        numericInput("rep", "Number of Replications:", 0, min = 2, max = 100),
        radioButtons("treatment", "Please pick the name given for Treatment column in your file", choices = names(csvfile())),
        radioButtons("Replication", "Please pick the name given for Replication column in your file", choices = names(csvfile())),
        radioButtons("yield", "Please pick the name given for variable of interest in your file", choices = names(csvfile())),
        tags$br(),
        actionBttn(
          inputId = "submit",
          label = "Run Analysis!",
          color = "danger",
          style = "jelly"
        )
      )
    }
  })

  output$var1 <- renderUI({
    if (is.null(input$file1$datapath)) {
      return()
    }
    if (is.null(input$submit)) {
      return()
    }
    if (input$submit > 0) {
      list(
        radioButtons("format", "Download report:", c("HTML"),
          inline = TRUE
        ),
        downloadButton("downloadReport")
      )
    }
  })

  ##################################### TRT means
  output$trtmeans <- renderTable(
    {
      if (is.null(input$file1$datapath)) {
        return()
      }
      if (is.null(input$submit)) {
        return()
      }
      if (input$submit > 0) {
        validate(
          need(input$treatment != input$yield, "Warning 1: Both input variables selected (Treatment and response) are same. Choose Treatment and response correctly for meaningful result")
        )
        validate(
          need(input$treatment != input$Replication, "Warning 1: Both input variables selected (Treatment and Replication) are same. Choose Treatment and Replication correctly for meaningful result")
        )
        validate(
          need(input$yield != input$Replication, "Warning 1: Both input variables selected (Replication and response) are same. Choose Replication and response correctly for meaningful result")
        )
        validate(
          need(input$trt != 0, "Please enter number of treatments")
        )
        validate(
          need(input$rep != 0, "Please enter number of replications")
        )
        input$reload
        Sys.sleep(2)
        d <- as.data.frame(csvfile())
        r <- as.numeric(input$rep)
        t <- as.numeric(input$trt)
        response <- d[, input$yield]
        treatment <- d[, input$treatment]
        replication <- d[, input$Replication]
        treatment <- factor(treatment)
        replication <- factor(replication)
        anvaTable <- lm(response ~ treatment + replication)
        result <- as.data.frame(anova(anvaTable))
        out <- agricolae::LSD.test(csvfile()[, input$yield], csvfile()[, input$treatment], result[3, 1], result[3, 3])
        trtmeans <- out$means
        trtmeans <- trtmeans[gtools::mixedsort(row.names(trtmeans)), ]
        colnames(trtmeans)[1] <- "Treatment_means"
        drops <- c("r", "Q25", "Q50", "Q75","se")
        trtmeans[, !(names(trtmeans) %in% drops)]
      }
    },
    digits = 3,
    caption = ("<b> Treatment means & other statistics </b>"),
    bordered = TRUE,
    align = "c",
    caption.placement = getOption("xtable.caption.placement", "top"),
    rownames = TRUE
  )

  ################################## ANOVA
  output$aovSummary <- renderTable(
    {
      if (is.null(input$file1$datapath)) {
        return()
      }
      if (is.null(input$submit)) {
        return()
      }
      if (input$submit > 0) {
        validate(
          need(input$treatment != input$yield, "")
        )
        validate(
          need(input$treatment != input$Replication, "")
        )
        validate(
          need(input$yield != input$Replication, "")
        )
        validate(
          need(input$trt != 0, "")
        )
        validate(
          need(input$rep != 0, "")
        )
        d <- as.data.frame(csvfile())
        r <- as.numeric(input$rep)
        t <- as.numeric(input$trt)
        response <- d[, input$yield]
        treatment <- d[, input$treatment]
        replication <- d[, input$Replication]
        treatment <- factor(treatment)
        replication <- factor(replication)
        anvaTable <- lm(response ~ treatment + replication)
        result <- as.data.frame(anova(anvaTable))
        SoV <- c("Treatment", "Replication", "Error")
        final <- cbind(SoV, result)
        final
      }
    },
    digits = 3,
    caption = ("<b> ANOVA TABLE </b>"),
    bordered = TRUE,
    align = "c",
    caption.placement = getOption("xtable.caption.placement", "top")
  )


  ######################## SEM & other values
  output$SEM <- renderTable(
    {
      if (is.null(input$file1$datapath)) {
        return()
      }
      if (is.null(input$submit)) {
        return()
      }
      if (input$submit > 0) {
        validate(
          need(input$treatment != input$yield, "")
        )
        validate(
          need(input$treatment != input$Replication, "")
        )
        validate(
          need(input$yield != input$Replication, "")
        )
        validate(
          need(input$trt != 0, "")
        )
        validate(
          need(input$rep != 0, "")
        )
        d <- as.data.frame(csvfile())
        r <- as.numeric(input$rep)
        t <- as.numeric(input$trt)
        response <- d[, input$yield]
        treatment <- d[, input$treatment]
        replication <- d[, input$Replication]
        treatment <- factor(treatment)
        replication <- factor(replication)
        anvaTable <- lm(response ~ treatment + replication)
        result <- as.data.frame(anova(anvaTable))
        out <- agricolae::LSD.test(d[, input$yield], d[, input$treatment], result[3, 1], result[3, 3])
        colnam <- c("MSE", "SE(d)", "SE(m)", "CV(%)")
        stat <- out$statistics
        MSE <- stat[1, 1]
        SED <- sqrt((2 * MSE) / r)
        SEM <- sqrt(MSE / r)
        CV <- stat[1, 4]
        Result <- cbind(MSE, SED, SEM, CV)
        colnames(Result) <- colnam
        Result
      }
    },
    digits = 3,
    caption = ("<b> SEM & Other statistics </b>"),
    bordered = TRUE,
    align = "c",
    caption.placement = getOption("xtable.caption.placement", "top")
  )

  ################################## Inference on p value text
  output$text <- renderUI({
    if (is.null(input$file1$datapath)) {
      return()
    }
    if (is.null(input$submit)) {
      return()
    }
    if (input$submit > 0) {
      validate(
        need(input$treatment != input$yield, "")
      )
      validate(
        need(input$treatment != input$Replication, "")
      )
      validate(
        need(input$yield != input$Replication, "")
      )
      validate(
        need(input$trt != 0, "")
      )
      validate(
        need(input$rep != 0, "")
      )
      d <- as.data.frame(csvfile())
      r <- as.numeric(input$rep)
      t <- as.numeric(input$trt)
      response <- d[, input$yield]
      treatment <- d[, input$treatment]
      replication <- d[, input$Replication]
      treatment <- factor(treatment)
      replication <- factor(replication)
      anvaTable <- lm(response ~ treatment + replication)
      result <- as.data.frame(anova(anvaTable))
      if (result[1, 5] <= 0.05) {
        HTML(paste0("<b>", "Since the P-value in ANOVA table is < 0.05, there is a significant difference between atleast
                    a pair of treatments, so multiple comparison is required to identify best treatment(s) ", "</b>"))
      }
      else {
        HTML(paste0("<b>", "Treatment means are not significantly different"))
      }
    }
  })

  ################# Multiple comparison options
  output$inference <- renderUI({
    if (is.null(input$file1$datapath)) {
      return()
    }
    if (is.null(input$submit)) {
      return()
    }
    if (input$submit > 0) {
      validate(
        need(input$treatment != input$yield, "")
      )
      validate(
        need(input$treatment != input$Replication, "")
      )
      validate(
        need(input$yield != input$Replication, "")
      )
      validate(
        need(input$trt != 0, "")
      )
      validate(
        need(input$rep != 0, "")
      )
      d <- as.data.frame(csvfile())
      r <- as.numeric(input$rep)
      t <- as.numeric(input$trt)
      response <- d[, input$yield]
      treatment <- d[, input$treatment]
      replication <- d[, input$Replication]
      treatment <- factor(treatment)
      replication <- factor(replication)
      anvaTable <- lm(response ~ treatment + replication)
      result <- as.data.frame(anova(anvaTable))
      if (result[1, 5] <= 0.05) {
        list(selectInput(
          "req", "Please select multiple comparison method (alpha =0.05)",
          c(
            LSD = "lsd",
            DMRT = "dmrt",
            TUKEY = "tukey"
          ),
          "lsd"
        ))
      }
      else {
        return()
      }
    }
  })

  ################## SEM, CD, CV etc
  output$multi <- renderTable(
    {
      if (is.null(input$file1$datapath)) {
        return()
      }
      if (is.null(input$submit)) {
        return()
      }
      if (is.null(input$req)) {
        return()
      }
      if (input$submit > 0) {
        if (input$req == "lsd") {
          validate(
            need(input$treatment != input$yield, "")
          )
          validate(
            need(input$treatment != input$Replication, "")
          )
          validate(
            need(input$yield != input$Replication, "")
          )
          validate(
            need(input$trt != 0, "")
          )
          validate(
            need(input$rep != 0, "")
          )
          d <- as.data.frame(csvfile())
          r <- as.numeric(input$rep)
          t <- as.numeric(input$trt)
          response <- d[, input$yield]
          treatment <- d[, input$treatment]
          replication <- d[, input$Replication]
          treatment <- factor(treatment)
          replication <- factor(replication)
          anvaTable <- lm(response ~ treatment + replication)
          result <- as.data.frame(anova(anvaTable))
          if (result[1, 5] <= 0.05) {
            out <- agricolae::LSD.test(d[, input$yield], d[, input$treatment], result[3, 1], result[3, 3])
            colnam <- c("MSE", "SE(d)", "SE(m)", "CD", "t value", "CV(%)")
            stat <- out$statistics
            MSE <- stat[1, 1]
            SED <- sqrt((2 * MSE) / r)
            SEM <- sqrt(MSE / r)
            CD <- stat[1, 6]
            t <- stat[1, 5]
            CV <- stat[1, 4]
            Result <- cbind(MSE, SED, SEM, CD, t, CV)
            colnames(Result) <- colnam
            Result
          }
        }
        else if (input$req == "dmrt") {
          validate(
            need(input$treatment != input$yield, "")
          )
          validate(
            need(input$treatment != input$Replication, "")
          )
          validate(
            need(input$yield != input$Replication, "")
          )
          validate(
            need(input$trt != 0, "")
          )
          validate(
            need(input$rep != 0, "")
          )
          d <- as.data.frame(csvfile())
          r <- as.numeric(input$rep)
          t <- as.numeric(input$trt)
          response <- d[, input$yield]
          treatment <- d[, input$treatment]
          replication <- d[, input$Replication]
          treatment <- factor(treatment)
          replication <- factor(replication)
          anvaTable <- lm(response ~ treatment + replication)
          result <- as.data.frame(anova(anvaTable))
          if (result[1, 5] <= 0.05) {
            out <- agricolae::duncan.test(d[, input$yield], d[, input$treatment], result[3, 1], result[3, 3], alpha = 0.05, group = TRUE, main = NULL, console = FALSE)
            out$duncan
          }
        }
        else if (input$req == "tukey") {
          validate(
            need(input$treatment != input$yield, "")
          )
          validate(
            need(input$treatment != input$Replication, "")
          )
          validate(
            need(input$yield != input$Replication, "")
          )
          validate(
            need(input$trt != 0, "")
          )
          validate(
            need(input$rep != 0, "")
          )
          d <- as.data.frame(csvfile())
          r <- as.numeric(input$rep)
          t <- as.numeric(input$trt)
          response <- d[, input$yield]
          treatment <- d[, input$treatment]
          replication <- d[, input$Replication]
          treatment <- factor(treatment)
          replication <- factor(replication)
          anvaTable <- lm(response ~ treatment + replication)
          result <- as.data.frame(anova(anvaTable))
          if (result[1, 5] <= 0.05) {
            out <- agricolae::HSD.test(d[, input$yield], d[, input$treatment], result[3, 1], result[3, 3], alpha = 0.05, group = TRUE, main = NULL, unbalanced = FALSE, console = FALSE)
            out$statistics
          }
        }
      }
    },
    digits = 3,
    caption = "alpha =0.05",
    bordered = TRUE,
    align = "c",
    caption.placement = getOption("xtable.caption.placement", "bottom")
  )

  ############################# grouping
  output$group <- renderTable(
    {
      if (is.null(input$file1$datapath)) {
        return()
      }
      if (is.null(input$submit)) {
        return()
      }
      if (is.null(input$req)) {
        return()
      }
      if (input$submit > 0) {
        if (input$req == "lsd") {
          validate(
            need(input$treatment != input$yield, "")
          )
          validate(
            need(input$treatment != input$Replication, "")
          )
          validate(
            need(input$yield != input$Replication, "")
          )
          validate(
            need(input$trt != 0, "")
          )
          validate(
            need(input$rep != 0, "")
          )
          d <- as.data.frame(csvfile())
          r <- as.numeric(input$rep)
          t <- as.numeric(input$trt)
          response <- d[, input$yield]
          treatment <- d[, input$treatment]
          replication <- d[, input$Replication]
          treatment <- factor(treatment)
          replication <- factor(replication)
          anvaTable <- lm(response ~ treatment + replication)
          result <- as.data.frame(anova(anvaTable))
          if (result[1, 5] <= 0.05) {
            out <- agricolae::LSD.test(d[, input$yield], d[, input$treatment], result[3, 1], result[3, 3])
            outgroup <- out$groups
            colnames(outgroup) <- c("trt_mean", "grouping")
            outgroup
          }
        }
        else if (input$req == "dmrt") {
          validate(
            need(input$treatment != input$yield, "")
          )
          validate(
            need(input$treatment != input$Replication, "")
          )
          validate(
            need(input$yield != input$Replication, "")
          )
          validate(
            need(input$trt != 0, "")
          )
          validate(
            need(input$rep != 0, "")
          )
          d <- as.data.frame(csvfile())
          r <- as.numeric(input$rep)
          t <- as.numeric(input$trt)
          response <- d[, input$yield]
          treatment <- d[, input$treatment]
          replication <- d[, input$Replication]
          treatment <- factor(treatment)
          replication <- factor(replication)
          anvaTable <- lm(response ~ treatment + replication)
          result <- as.data.frame(anova(anvaTable))
          if (result[1, 5] <= 0.05) {
            out <- agricolae::duncan.test(d[, input$yield], d[, input$treatment], result[3, 1], result[3, 3], alpha = 0.05, group = TRUE, main = NULL, console = FALSE)
            outgroup <- out$groups
            colnames(outgroup) <- c("trt_mean", "grouping")
            outgroup
          }
        }
        else if (input$req == "tukey") {
          validate(
            need(input$treatment != input$yield, "")
          )
          validate(
            need(input$treatment != input$Replication, "")
          )
          validate(
            need(input$yield != input$Replication, "")
          )
          validate(
            need(input$trt != 0, "")
          )
          validate(
            need(input$rep != 0, "")
          )
          d <- as.data.frame(csvfile())
          r <- as.numeric(input$rep)
          t <- as.numeric(input$trt)
          response <- d[, input$yield]
          treatment <- d[, input$treatment]
          replication <- d[, input$Replication]
          treatment <- factor(treatment)
          replication <- factor(replication)
          anvaTable <- lm(response ~ treatment + replication)
          result <- as.data.frame(anova(anvaTable))
          if (result[1, 5] <= 0.05) {
            out <- agricolae::HSD.test(d[, input$yield], d[, input$treatment], result[3, 1], result[3, 3], alpha = 0.05, group = TRUE, main = NULL, unbalanced = FALSE, console = FALSE)
            outgroup <- out$groups
            colnames(outgroup) <- c("trt_mean", "grouping")
            outgroup
          }
        }
      }
    },
    digits = 3,
    caption = "Treatments with same letters are not significantly different",
    bordered = TRUE,
    align = "c",
    caption.placement = getOption("xtable.caption.placement", "bottom"),
    rownames = TRUE
  )


  ######################### Interactive for plots
  output$varplot <- renderUI({
    if (is.null(input$file1$datapath)) {
      return()
    }
    if (is.null(input$submit)) {
      return()
    }
    if (input$submit > 0) {
      validate(
        need(input$treatment != input$yield, "Warning 1: Both input variables selected (Treatment and response) are same. Choose Treatment and response correctly for meaningful result")
      )
      validate(
        need(input$treatment != input$Replication, "Warning 1: Both input variables selected (Treatment and Replication) are same. Choose Treatment and Replication correctly for meaningful result")
      )
      validate(
        need(input$yield != input$Replication, "Warning 1: Both input variables selected (Replication and response) are same. Choose Replication and response correctly for meaningful result")
      )
      validate(
        need(input$trt != 0, "Please enter number of treatments")
      )
      validate(
        need(input$rep != 0, "Please enter number of replications")
      )

      list(selectInput(
        "plotreq", "Please select the required plot",
        c(
          "Barchart" = "barchart",
          "Barchart with grouping" = "bcg",
          "Boxplot" = "boxplot"
        ),
        "barchart"
      ))
    }
  })

  output$varboxplot <- renderUI({
    if (is.null(input$file1$datapath)) {
      return()
    }
    if (is.null(input$submit)) {
      return()
    }
    if (is.null(input$plotreq)) {
      return()
    }
    if (input$plotreq == "boxplot") {
      if (input$submit > 0) {
        list(
          textInput("xlab", "Enter required x-axis label", "X-axis"),
          textInput("ylab", "Enter required y-axis label", "Y-axis"),
          selectInput(
            "col1", "Line colour pattern",
            c(
              "Pattern 1" = "Dark2",
              "Pattern 2" = "Set2",
              "Pattern 3" = "Set3",
              "Pattern 4" = "Accent",
              "Pattern 5" = "Set1"
            ),
            "Dark2"
          ),
          sliderInput("size", "Required width of the line:",
            min = 0.5, max = 2, value = 0.5
          ),
          sliderInput("size1", "X-axis label size:",
            min = 10, max = 20, value = 10
          ),
          sliderInput("size2", "Y-axis label size:",
            min = 10, max = 20, value = 10
          ),
          checkboxInput(
            "grey_box",
            "Convert the plot to grey scale", FALSE
          ),
          actionBttn(
            inputId = "submit1",
            label = "Click here to Draw",
            color = "success",
            style = "stretch"
          )
        )
      }
    }
    else if (input$plotreq == "barchart") {
      if (input$submit > 0) {
        list(
          textInput("xlab", "Enter required x-axis label", "X-axis"),
          textInput("ylab", "Enter required y-axis label", "Y-axis"),
          textInput("title", "Enter required Title", "title"),
          selectInput(
            "col1", "Select colour pattern",
            c(
              "Pattern 1" = "Dark2",
              "Pattern 2" = "Set2",
              "Pattern 3" = "Set3",
              "Pattern 4" = "Accent",
              "Pattern 5" = "Set1"
            ),
            "Dark2"
          ),
          sliderInput("width1", "Required width of the bar:",
            min = 0.1, max = 1, value = 0.5
          ),
          sliderInput("width2", "Required width of error bar:",
            min = 0.1, max = 1, value = 0.2
          ),
          sliderInput("width3", "X-axis label size:",
            min = 10, max = 20, value = 10
          ),
          sliderInput("width4", "Y-axis label size:",
            min = 10, max = 20, value = 10
          ),
          sliderInput("trans", "colour Transparency of bar:",
            min = 0.1, max = 1, value = 1
          ),
          sliderInput("trans1", "colour Transparency of error bar:",
            min = 0, max = 1, value = 1
          ),
          checkboxInput(
            "grey",
            "Convert the plot to grey scale", FALSE
          ),
          actionBttn(
            inputId = "submit1",
            label = "Click here to draw",
            color = "success",
            style = "stretch"
          )
        )
      }
    }
    else if (input$plotreq == "bcg") {
      if (input$submit > 0) {
        list(
          textInput("xlab", "Enter required x-axis label", "X-axis"),
          textInput("ylab", "Enter required y-axis label", "Y-axis"),
          textInput("title", "Enter required Title", "title"),
          selectInput(
            "col1", "Select colour pattern",
            c(
              "Pattern 1" = "Dark2",
              "Pattern 2" = "Set2",
              "Pattern 3" = "Set3",
              "Pattern 4" = "Accent",
              "Pattern 5" = "Set1"
            ),
            "Dark2"
          ),
          sliderInput("width1", "Required width of the bar:",
            min = 0.1, max = 1, value = 0.5
          ),
          sliderInput("width2", "Required width of error bar:",
            min = 0.1, max = 1, value = 0.2
          ),
          sliderInput("width3", "X-axis label size:",
            min = 10, max = 20, value = 10
          ),
          sliderInput("width4", "Y-axis label size:",
            min = 10, max = 20, value = 10
          ),
          sliderInput("trans", "colour Transparency of bar:",
            min = 0.1, max = 1, value = 1
          ),
          sliderInput("trans1", "colour Transparency of error bar:",
            min = 0, max = 1, value = 1
          ),
          sliderInput("width5", "Font label size of grouping letters:",
            min = 1.5, max = 6.5, value = 3.5
          ),
          checkboxInput(
            "grey",
            "Convert the plot to grey scale", FALSE
          ),
          actionBttn(
            inputId = "submit1",
            label = "Click here to draw",
            color = "success",
            style = "stretch"
          )
        )
      }
    }
  })

  ####################################### PLots and Graphs
  output$boxplot <- renderPlot(
    {
      plotInput()
    },
    bg = "transparent"
  )


  ############################# Download Report


  output$downloadReport <- downloadHandler(
    filename = function() {
      paste("my-report", sep = ".", switch(input$format,
        HTML = "html"
      ))
    },
    content = function(file) {
      src <- normalizePath("report.Rmd")
      owd <- setwd(tempdir())
      on.exit(setwd(owd))
      file.copy(src, "report.Rmd", overwrite = TRUE)
      out <- render("report.Rmd", switch(input$format,
        HTML = html_document()
      ))
      file.rename(out, file)
    }
  )


  ######################## Download Image
  output$image_down <- renderUI({
    if (is.null(input$file1$datapath)) {
      return()
    }
    if (is.null(input$plotreq)) {
      return()
    }
    if (is.null(input$submit1)) {
      return()
    }
    if (input$plotreq == "boxplot") {
      if (input$submit1 > 0) {
        list(downloadButton("downloadImage1",
          label = "Download BoxPlot", class = "butt1"
        ))
      }
    }

    else if (input$plotreq == "barchart" || input$plotreq == "bcg") {
      if (input$submit1 > 0) {
        list(downloadButton("downloadImage2",
          label = "Download Barchart", class = "butt1"
        ))
      }
    }
  })


  ### plotting
  plotInput <- reactive({
    if (is.null(input$file1$datapath)) {
      return()
    }
    if (is.null(input$plotreq)) {
      return()
    }
    if (is.null(input$submit1)) {
      return()
    }

    if (input$plotreq == "boxplot") {
      if (input$submit1 > 0) {
        nb.cols <- as.numeric(input$trt + 2)
        x <- as.matrix(csvfile()[, input$treatment])
        y <- as.matrix(csvfile()[, input$yield])
        my_data <- data.frame(
          group = x,
          obs = y
        )

        colnames(my_data) <- c("Treatments", "obs")
        #sorting x label
        my_data$Treatments<-factor(my_data$Treatments, levels = unique(my_data$Treatments))
        mycolors <- colorRampPalette(brewer.pal(8, input$col1))(nb.cols)
        if (input$grey_box > 0) {
          p <- ggplot2::ggplot(
            my_data,
            aes(
              x = Treatments, y = obs,
              fill = Treatments
            )
          ) +
            geom_boxplot(lwd = input$size) +
            scale_fill_grey(start = 0.3, end = .9) +
            theme_bw() +
            labs(x = input$xlab, y = input$ylab) +
            theme(
              axis.text.x = element_text(
                angle = 90,
                size = input$size1,
                hjust = 1
              ),
              axis.text.y = element_text(size = input$size2)
            )
          p
        }
        else {
          p <- ggplot2::ggplot(
            my_data,
            aes(
              x = Treatments, y = obs,
              fill = Treatments
            )
          ) +
            geom_boxplot(lwd = input$size) +
            scale_fill_manual(values = mycolors) +
            theme_bw() +
            labs(x = input$xlab, y = input$ylab) +
            theme(
              axis.text.x = element_text(
                angle = 90,
                size = input$size1,
                hjust = 1
              ),
              axis.text.y = element_text(size = input$size2)
            )
          p
        }
      }
    }

    else if (input$plotreq == "barchart") {
      if (input$submit1 > 0) {
        d=as.data.frame(csvfile())
        r=as.numeric(input$rep)
        t=as.numeric(input$trt)
        response=d[,input$yield]
        treatment=d[,input$treatment]
        replication=d[,input$Replication]
        treatment=factor(treatment)
        replication=factor(replication)
        anvaTable=lm(response~treatment+replication)
        result <- as.data.frame(stats::anova(anvaTable))
        out <- agricolae::LSD.test(
          d[, input$yield],
          d[, input$treatment],
          result[3, 1], result[3, 3]
        )
        d1 <- out$means
        alpha <- 0.05
        t <- qt(alpha / 2, result[3, 1], lower.tail = FALSE) # tvalue
        d1$std_er <- d1$std / (sqrt(d1$r))
        drops <- c(
          "r", "Q25", "Q50", "Q75",
          "Max", "Min", "LCL", "UCL", "r", "std","se"
        )
        d1 <- d1[, !(names(d1) %in% drops)]
        d2 <- out$groups
        d <- merge(d1, d2, by = 0, all = TRUE)
        d <- d[-4]
        d$ic <- t * d$std_er
        colnames(d) <- c(
          "Treatments", "Response", "std.er",
          "group", "ic"
        )
        # arrange treatments inorder during plotting
        d <- d[gtools::mixedorder(d$Treatments), ]
        d$Treatments<-factor(d$Treatments, levels = unique(d$Treatments))
        nb.cols <- as.numeric(input$trt + 2)
        mycolors <- colorRampPalette(brewer.pal(8, input$col1))(nb.cols)


        if (input$grey > 0) {
          p <- ggplot(d, aes(x = Treatments, y = Response, fill = Treatments)) +
            geom_bar(
              stat = "identity",
              position = position_dodge(width = 1),
              alpha = input$trans, width = input$width1
            ) +
            geom_errorbar(aes(ymin = Response - ic, ymax = Response + ic),
                          width = input$width2, colour = "black", alpha = input$trans1,
                          size = 0.5
            ) +
            scale_x_discrete(labels=unique(d$Treatments))+
            ggtitle(input$title) +
            scale_fill_grey(start = 0.3, end = .9) +
            scale_y_continuous(expand = expansion(mult = c(0, .3))) +
            theme_bw() +
            theme(
              plot.title = element_text(size = 22, hjust = 0.5),
              axis.text.x = element_text(angle = 90, hjust = 1, size = input$width3),
              axis.text.y = element_text(size = input$width4)
            )


          p
        }
        else {
          p <- ggplot(d, aes(x = Treatments, y = Response, fill = Treatments)) +
            geom_bar(
              stat = "identity",
              position = position_dodge(width = 1),
              alpha = input$trans, width = input$width1
            ) +
            geom_errorbar(aes(ymin = Response - ic, ymax = Response + ic),
                          width = input$width2, colour = "black", alpha = input$trans1,
                          size = 0.5
            ) +
            scale_x_discrete(labels=unique(d$Treatments))+
            labs(x = input$xlab, y = input$ylab) +
            ggtitle(input$title) +
            scale_fill_manual(values = mycolors) +
            scale_y_continuous(expand = expansion(mult = c(0, .3))) +
            theme_bw() +
            theme(
              plot.title = element_text(size = 22, hjust = 0.5),
              axis.text.x = element_text(angle = 90, hjust = 1, size = input$width3),
              axis.text.y = element_text(size = input$width4)
            )


          p
        }
      }
    }
    else if (input$plotreq == "bcg") {
      if (input$submit1 > 0) {
        d=as.data.frame(csvfile())
        r=as.numeric(input$rep)
        t=as.numeric(input$trt)
        response=d[,input$yield]
        treatment=d[,input$treatment]
        replication=d[,input$Replication]
        treatment=factor(treatment)
        replication=factor(replication)
        anvaTable=lm(response~treatment+replication)
        result <- as.data.frame(stats::anova(anvaTable))
        out <- agricolae::LSD.test(
          d[, input$yield],
          d[, input$treatment],
          result[3, 1], result[3, 3]
        )
        d1 <- out$means
        alpha <- 0.05
        t <- qt(alpha / 2, result[3, 1], lower.tail = FALSE) # tvalue
        d1$std_er <- d1$std / (sqrt(d1$r))
        drops <- c(
          "r", "Q25", "Q50", "Q75",
          "Max", "Min", "LCL", "UCL", "r", "std","se"
        )
        d1 <- d1[, !(names(d1) %in% drops)]
        d2 <- out$groups
        d <- merge(d1, d2, by = 0, all = TRUE)
        d <- d[-4]
        d$ic <- t * d$std_er
        colnames(d) <- c(
          "Treatments", "Response", "std.er",
          "group", "ic"
        )
        d <- d[gtools::mixedorder(d$Treatments), ]
        d$Treatments<-factor(d$Treatments, levels = unique(d$Treatments))
        nb.cols <- as.numeric(input$trt + 2)
        mycolors <- colorRampPalette(brewer.pal(8, input$col1))(nb.cols)

        # plotting
        if (input$grey > 0) {
          p <- ggplot(d, aes(x = Treatments, y = Response, fill = Treatments)) +
            geom_bar(
              stat = "identity",
              position = position_dodge(width = 1),
              alpha = input$trans, width = input$width1
            ) +
            geom_errorbar(aes(ymin = Response - ic, ymax = Response + ic),
                          width = input$width2, colour = "black", alpha = input$trans1,
                          size = 0.5
            ) +
            scale_x_discrete(labels = unique(d$Treatments))+
            geom_text(aes(label = group, y = Response + ic), vjust = -0.5,
                      size=input$width5) +
            labs(x = input$xlab, y = input$ylab) +
            ggtitle(input$title) +
            scale_fill_grey(start = 0.3, end = .9) +
            scale_y_continuous(expand = expansion(mult = c(0, .3))) +
            theme_bw() +
            theme(
              plot.title = element_text(size = 22, hjust = 0.5),
              axis.text.x = element_text(angle = 90, hjust = 1, size = input$width3),
              axis.text.y = element_text(size = input$width4)
            )


          p
        }

        else {
          p <- ggplot(d, aes(x = Treatments, y = Response, fill = Treatments)) +
            geom_bar(
              stat = "identity",
              position = position_dodge(width = 1),
              alpha = input$trans, width = input$width1
            ) +
            geom_errorbar(aes(ymin = Response - ic, ymax = Response + ic),
                          width = input$width2, colour = "black", alpha = input$trans1,
                          size = 0.5
            ) +
            scale_x_discrete(labels = unique(d$Treatments))+
            geom_text(aes(label = group, y = Response + ic), vjust = -0.5,
                      size=input$width5) +
            labs(x = input$xlab, y = input$ylab) +
            ggtitle(input$title) +
            scale_fill_manual(values = mycolors) +
            scale_y_continuous(expand = expansion(mult = c(0, .3))) +
            theme_bw() +
            theme(
              plot.title = element_text(size = 22, hjust = 0.5),
              axis.text.x = element_text(angle = 90, hjust = 1, size = input$width3),
              axis.text.y = element_text(size = input$width4)
            )


          p
        }
      }
    }
  })


  ###
  output$downloadImage1 <- downloadHandler(
    filename = "boxplot.png",
    content = function(file) {
      device <- function(..., width, height) {
        grDevices::png(...,
          width = width, height = height,
          res = 500, units = "in"
        )
      }
      ggsave(file, plot = plotInput(), device = device)
    }
  )

  output$downloadImage2 <- downloadHandler(
    filename = "barchart.png",
    content = function(file) {
      device <- function(..., width, height) {
        grDevices::png(...,
          width = width, height = height,
          res = 500, units = "in"
        )
      }
      ggsave(file, plot = plotInput(), device = device)
    }
  )

  ########################### end image download

  ############################## download data set
  output$data_set <- renderUI({
    if (is.null(input$file1$datapath)) {
      list(
        selectInput("dataset", "Choose a dataset:",
          choices = c("mango data", "feed data", "sample data")
        ),
        downloadButton("downloadData", label = "Download csv file to test", class = "butt1")
      )
    }

    else {
      return()
    }
  })
  datasetInput <- reactive({
    mango <- read.csv(system.file("extdata/rbd_data",
      "mango_rbd.csv",
      package = "grapesAgri1"
    ))
    feed <- read.csv(system.file("extdata/rbd_data",
      "feed_rbd.csv",
      package = "grapesAgri1"
    ))
    sample1 <- read.csv(system.file("extdata/rbd_data",
      "sample_rbd.csv",
      package = "grapesAgri1"
    ))
    switch(input$dataset,
      "mango data" = mango,
      "feed data" = feed,
      "sample data" = sample1
    )
  })

  output$downloadData <- downloadHandler(
    filename = function() {
      paste(input$dataset, ".csv", sep = "")
    },
    content = function(file) {
      write.csv(datasetInput(), file, row.names = FALSE)
    }
  )
  ######################### end data set download
  ############################### this note appear on opening
  output$start_note <- renderUI({
    if (is.null(input$file1$datapath)) {
      return(
        HTML(paste0(
          " <h4> To perform analysis using your own dataset, prepare excel file in csv format by reading instruction below </h4>
<p>
<ui>
<li>Open a new blank excel file</li>
<li>Copy and paste observations into a new sheet (use only one sheet) of a new excel file</li>
<li>Three columns are required Treatment, Replication and Response. </li>
<li>You can use any names for your columns</li>
<li>You can also add more than one response as columns</li>
<li>No space is allowed in the treatment name. </li>
<li>If space is required use underscore ‘_’ or ‘.’ full stop; for example ‘Treatment name’ should be written as Treatment_name or Treatment.name</li>
<li>Don't type and delete anything on other cells without data. If so select those cells, right click and click clear contents. </li>
<li>Give names to all column, Don't add any unnecessary columns that is not required for analysis</li>
<li>Data should be arranged towards upper left corner and row above the data should not be left blank. </li>
<li>Once all these are done, your file is ready. Now save it as CSV file. </li>
<li><b>Upload file by clicking browse in the app </b></li>
</ui>
</p>
<b> You can download a model data set from below and test the App  </b>

"
        ))
      )
    }

    else {
      return()
    }
  })

  output$start_note2 <- renderUI({
    if (is.null(input$file1$datapath)) {
      return(
        HTML(paste0(
          "<li> <b>Note</b>: Don't forget to enter
        Treatment number and Replication number
          while doing analysis</li>"
        ))
      )
    }

    else {
      return()
    }
  })

  output$start_note3 <- renderUI({
    if (is.null(input$file1$datapath)) {
      return(
        HTML(paste0(
          "<b>Plots will appear here once you upload the csv file by
        clicking 'Browse' and click submit</b>
        "
        ))
      )
    }

    else {
      return()
    }
  })
}

shinyApp(ui = ui, server = server)
pratheesh3780/grapesAgri1 documentation built on Dec. 7, 2023, 5:49 a.m.