makeFATask: Creates a Factor Analysis Task Object for numeric data

Description Usage Arguments Value Examples

Description

A Task encapsulates the Data with some additional information.

Usage

1
2
3
makeFATask(id, data, nfactors = NULL, rotate = "oblimin",
  par.vals = list(), par.vals.parallel = list(plot = FALSE),
  show.NA.msg = FALSE)

Arguments

id

[character(1)]
ID of the Task Object

data

[data.frame]
A Dataframe with different variables

nfactors

[integer(1)]
Number of factors to extract. If nothing is inserted the optimal
number of factors will be calculated according to parallel analysis.
For more information @seealso fa.parallel.
Default is nfactors = NULL

rotate

[character(1)]
Defines the rotation method. Possible values are:
"none", "varimax", "quartimax", "bentlerT", "equamax",
"varimin", "geominT" and "bifactor",
"Promax", "promax", "oblimin", "simplimax",
"bentlerQ, "geominQ","biquartimin" and "cluster".
Default is rotate = "oblimin". For more information @seealso fa

par.vals

[list]
Additional arguments handled over to @seealso fa.
Default is empty list par.vals = list()

par.vals.parallel

[list]
Additional arguments handed over to @seealso fa.parallel.
Default is par.vals.parallel = list(plot = FALSE)

show.NA.msg

[logical(1)]
Logical whether to show missing values message
Default is show.NA.msg = FALSE)

Value

FATask Object

Examples

1
2
3
4
5
 library(psych)
 data(bfi)
 #take small sample of size 200L:
 bfi_small = bfi[sample(seq_len(nrow(bfi)), size = 200L), ]
 FA.task = makeFATask(id = "bfi", data = bfi_small)

ptl93/AEDA documentation built on May 7, 2019, 3:20 p.m.