makeMDSTask: Creates a Multi Dimensional Scaling Task Object

Description Usage Arguments Value Examples

Description

A Task encapsulates the Data with some additional information.
As of now MDS performs classical (weighted) MDS and non-metric methods

Usage

1
2
makeMDSTask(id, data, dist.norm = "euclidean", method = "cmdscale",
  par.vals = list(), show.NA.msg = FALSE, ...)

Arguments

id

[character(1)]
ID of the Task Object

data

[data.frame]
A Dataframe with different variables

dist.norm

[character(1)]
Character indicating how the distance matrix will be computed.
Possible values are:"euclidean", "maximum", "manhattan",
"canberra", "binary" or "minkowski".

method

[character(1)]
Defines the MDS method Possible choices are:
For Metric Scaling:

  • cmdscale - for more information @seealso cmdscale

  • wcmdscale - for more information @seealso wcmdscale

  • smacofSym - for more information @seealso smacofSym

For Non-Metric Scaling:

  • isoMDS - for more information @seealso isoMDS

  • sammon - for more information @seealso sammon

Default is method = "cmdscale"

par.vals

[list]
Additional arguments handled over to MDS algorithm method.
Default is empty list par.vals = list()

show.NA.msg

[logical(1)]
Logical whether to show missing values message
Default is FALSE.

...

For now has no use

Value

MDSTask Object

Examples

1
2
3
data(swiss)
mds.task = makeMDSTask(id = "swiss", data = swiss,
 dist.norm = "euclidean", method = "cmdscale", show.NA.msg = TRUE)

ptl93/AEDA documentation built on May 7, 2019, 3:20 p.m.