generate_guo_weibull_table_2_data <- function(n, p, tau = Inf) {
theta <- guo_weibull_series_mle$mle
shape <- theta[seq(1, length(theta), 2)]
scale <- theta[seq(2, length(theta), 2)]
m <- length(shape)
comp_times <- matrix(nrow = n, ncol = m)
for (j in 1:m)
comp_times[,j] <- rweibull(
n = n,
shape = shape[j],
scale = scale[j])
comp_times <- md_encode_matrix(comp_times, "t")
comp_times %>%
md_series_lifetime_right_censoring(tau) %>%
md_bernoulli_cand_C1_C2_C3(p) %>%
md_cand_sampler()
}
p.hat <- .215
n <- 30
guo_weibull_series_dgp_1 <- generate_guo_weibull_table_2_data(
n = n, p = p.hat)
ll <- md_loglike_weibull_series_C1_C2_C3(
guo_weibull_series_dgp_1,
deltavar = NULL)
ll_ref <- md_loglike_weibull_series_C1_C2_C3(
guo_weibull_series_md, deltavar = NULL)
res <- optim(par = guo_weibull_series_mle$mle,
fn = ll,
hessian = TRUE,
control = list(
fnscale = -1,
maxit = 1000L,
parscale = c(1,1000,1,1000,1,1000)))
res$par - theta
ll_ref(res$par) - ll_ref(theta)
res$value - guo_weibull_series_mle$loglike
res$par
theta
confint(mle_numerical(res))
theta <- guo_weibull_series_mle$mle
data <- md_boolean_matrix_to_charsets(guo_weibull_series_dgp_1, drop_set = TRUE)
data$delta <- NULL
print(data, drop_latent = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.