#' @title Create a metadata table from several surveys
#' @rdname metadata_create
#' @param inheritParams read_surveys
#' @family metadata functions
#' @examples
#' examples_dir <- system.file( "examples", package = "retroharmonize")
#'
#' my_rds_files <- dir( examples_dir)[grepl(".rds",
#' dir(examples_dir))]
#'
#' example_surveys <- read_surveys(file.path(examples_dir, my_rds_files))
#' metadata_create (example_surveys)
#' @export
metadata_create <- function ( survey_list = NULL,
survey_paths = NULL,
.f = NULL) {
if ( !is.null(survey_list) ) {
validate_survey_list(survey_list)
if (! "list" %in% class(survey_list)) {
assert_that(is.survey(survey_list),
msg = "metadata_create(survey_list, ...) is neither a list nor a survey.")
survey_id <- attr(survey_list, "id")
survey_list <- list ( i = survey_list )
names(survey_list)[1] <-survey_id
}
metadata_list <- lapply ( survey_list, metadata_survey_create )
do.call ( rbind, metadata_list )
} else if (is.null(survey_paths)) {
stop("Error in metadata_surveys_create(): both 'survey_list' and 'survey_paths' are NULL.")
} else {
validate_survey_files (survey_paths)
read_survey_create_metadata <- function(x, .f) {
tmp <- read_survey(x, .f)
message ("Read: ", x)
metadata_survey_create(tmp)
}
metadata_list <- lapply ( X = survey_paths,
FUN = function(x) read_survey_create_metadata(x, .f) )
do.call(rbind, metadata_list)
}
}
#' @rdname metadata_create
#' @details The form \code{metadata_waves_create} is deprecated.
metadata_waves_create <- function(survey_list) {
.Deprecated(new = "metadata_surveys_create",
msg = "metadata_waves_create() is deprecated, use create_surveys_metadata() instead",
old = "merge_waves")
metadata_survey_create(survey_list)
}
#' @title Create a metadata table
#'
#' @description Create a metadata table from the survey data files.
#'
#' @details A data frame like tibble object is returned.
#' In case you are working with several surveys, a list of surveys or a vector
#' of file names containing the full path to the survey must be called with
#' \code{\link{metadata_create}}, which is a wrapper around
#' a list of \code{\link{metadata_survey_create}} calls.
#'
#' The structure of the returned tibble:
#' \describe{
#' \item{filename}{The original file name; if present; \code{missing}, if a non-\code{\link{survey}} data frame is used as input \code{survey}.}
#' \item{id}{The ID of the survey, if present; \code{missing}, if a non-\code{\link{survey}} data frame is used as input \code{survey}.}
#' \item{var_name_orig}{The original variable name in SPSS.}
#' \item{class_orig}{The original variable class after importing with\code{\link[haven]{read_spss}}.}
#' \item{var_label_orig}{The original variable label in SPSS.}
#' \item{labels}{A list of the value labels.}
#' \item{valid_labels}{A list of the value labels that are not marked as missing values.}
#' \item{na_labels}{A list of the value labels that refer to user-defined missing values.}
#' \item{na_range}{An optional range of a continuous missing range, if present in the vector.}
#' \item{n_labels}{Number of categories or unique levels, which may be different from the sum of missing and category labels.}
#' \item{n_valid_labels}{Number of categories in the non-missing range.}
#' \item{n_na_labels}{Number of categories of the variable, should be the sum of the former two.}
#' \item{na_levels}{A list of the user-defined missing values.}
#' }
#'
#' @param survey A survey data frame. You receive a survey object with any importing function, i.e.
#' \code{\link{read_rds}}, \code{\link{read_spss}} \code{\link{read_dta}}, \code{\link{read_csv}} or
#' their common wrapper \code{\link{read_survey}}.
#' You can construct it with \code{\link{survey}} from a data frame, too.
#' @importFrom tibble tibble
#' @importFrom dplyr left_join mutate case_when group_by ungroup
#' @importFrom tidyr nest unnest
#' @importFrom labelled na_values na_range val_labels var_label
#' @importFrom purrr map
#' @importFrom assertthat assert_that
#' @family metadata functions
#' @return A nested data frame with metadata and the range of
#' labels, na_values and the na_range itself.
#' @examples
#' metadata_create (
#' survey_list = read_rds (
#' system.file("examples", "ZA7576.rds",
#' package = "retroharmonize")
#' )
#' )
#' @export
metadata_survey_create <- function(survey) {
## Assertions before running the function -----------------------------
if ( "list" %in% class(survey) ) {
assert_that(all(vapply ( survey, is.survey, logical(1))),
msg = "Parameter 'survey' is not of s3 class survey or a list of them. See ?is.survey.")
metadata_df <- metadata_create(survey_list = survey)
return(metadata_df)
} else if (
# Accidentally the file names were supplied.
# This will validate if the surveys are indeed existing files.
is.character(survey) ) {
warning("The parameter 'survey' is not a single survey but a character vector. Try to understand them as a file names. See ?metadata_create.")
metadata_df <- metadata_create(survey_list = survey)
return(metadata_df)
} else {
assert_that(is.survey(survey),
msg = "Parameter 'survey' must be of s3 class survey. See ?is.survey.")
}
filename <- attr(survey, "filename")
if (is.null(filename)) filename <- "unknown"
id <- ifelse(is.null(attr(survey, "id")), attr(survey, "identifier"), attr(survey, "id"))
if (is.null(id)) id <- "missing"
if( ncol(survey) == 0) {
# Special case when file could not be read and survey is empty
return(metadata_initialize(filename = filename,
id = paste0(filename, " could not be read.")))
}
var_label_orig <- lapply (survey, labelled::var_label)
class_orig <- vapply( survey, function(x) class(x)[1], character(1))
metadata <- tibble (
filename = filename,
id = id,
var_name_orig = names(survey),
class_orig = class_orig,
var_label_orig = ifelse ( vapply(var_label_orig, is.null, logical(1)),
"",
unlist(var_label_orig)) %>%
as.character() %>%
var_label_normalize()
)
fn_valid_range <- function(x) {
labelled::val_labels(x)[!labelled::val_labels(x) %in% labelled::na_values(x)]
}
na_labels <- function(x) {
# labels that refer to na_values
labs <- labelled::val_labels(x)
if ( is.null(labs)) return(NA_character_)
selected_labs <- labelled::na_values(x)
labs[ labs %in% selected_labs ]
}
to_list_column <- function(.f = "na_values") {
# We use sapply because the length is to be discovered.
x <- case_when (
.f == "na_labels" ~ sapply (survey, na_labels), # internal function above
.f == "na_range" ~ sapply (survey, labelled::na_range),
.f == "valid_range" ~ sapply (survey, fn_valid_range), # internal function above
.f == "labels" ~ sapply (survey, labelled::val_labels)
)
x[sapply(x, is.null)] <- NA_character_
names(x) <- names(survey)
x
}
range_df <- tibble::tibble (
var_name_orig = names(survey),
labels = rep(NA_character_, length(names(survey))),
valid_labels = rep(NA_character_, length(names(survey))),
na_labels = rep(NA_character_, length(names(survey))),
na_range = rep(NA_character_, length(names(survey))),
n_labels = rep(0, length(names(survey))),
n_valid_labels = rep(0, length(names(survey))),
n_na_labels = rep(0, length(names(survey))),
)
if(
any(vapply(lapply(survey, class), function(x) any(grepl("labelled", x)), logical(1)))
) {
range_df <- tibble::tibble (
var_name_orig = names(survey),
labels = to_list_column(.f = "labels"),
valid_labels = to_list_column(.f = "valid_range"),
na_labels = to_list_column(.f = "na_labels"),
na_range = to_list_column (.f = "na_range")
)
label_length <- function(x) {
ifelse ( is.na(x[[1]])[1] | length(x[[1]]) ==0,
0, length(x[[1]]) )
}
range_df$n_labels <- vapply(1:nrow(range_df), function(x) label_length(range_df$labels[x]), numeric(1))
range_df$n_valid_labels <- vapply(1:nrow(range_df), function(x) label_length(range_df$valid_labels[x]), numeric(1))
range_df$n_na_labels <- vapply(1:nrow(range_df), function(x) label_length(range_df$na_labels[x]), numeric(1))
} else {
## Special case when there are no labelled variables present
return(metadata %>% left_join ( range_df,
by = "var_name_orig" ) %>% as.data.frame())
}
return_df <- metadata %>%
left_join ( range_df %>%
group_by ( var_name_orig ) %>%
tidyr::nest(),
by = "var_name_orig") %>%
tidyr::unnest ( cols = "data" ) %>%
ungroup() %>%
mutate ( n_na_labels = as.numeric(n_na_labels),
n_valid_labels = as.numeric(n_valid_labels),
n_labels = as.numeric(n_labels)) %>%
as.data.frame()
change_label_to_empty <- function() {
"none" = NA_real_
}
## Avoid the accidental creation of empty CHARACTER lists, because they do not bind with
## numeric lists.
return_df$label_type <- vapply(return_df$labels, function(x) class(x)[1], character(1))
return_dflabels <- ifelse (return_df$label_type == "character" & return_df$n_labels ==0 ,
yes = change_label_to_empty(),
no = return_df$labels )
return_df$valid_labels <- ifelse (return_df$label_type == "character" & return_df$n_labels ==0 ,
yes = change_label_to_empty(),
no = return_df$valid_labels )
return_df$na_labels <- ifelse (return_df$label_type == "character" & return_df$n_labels == 0 ,
yes = change_label_to_empty(),
no = return_df$na_labels )
return_df %>%
select ( -label_type )
}
# -----------------------------------------------------------------------
#' @title Initialize a metadata data frame
#'
#' @inheritParams metadata_create
#' @importFrom tibble tibble
#' @return A nested data frame with metadata and the range of
#' labels, na_values and the na_range itself.
#' @keywords internal
metadata_initialize <- function (filename, id ){
tibble (
filename = filename,
id = id,
class_orig = NA_character_,
var_name_orig = NA_character_,
var_label_orig = NA_character_,
labels = NA_character_,
valid_labels = list("none" = NA_real_),
na_labels = list("none" = NA_real_),
na_range = list("none" = NA_real_),
n_labels = 0,
n_valid_labels = 0,
n_na_labels = 0 )
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.