#' @export
#' @rdname aemet_forecast
aemet_forecast_daily <- function(x, verbose = FALSE, extract_metadata = FALSE,
progress = TRUE) {
# 1. API call -----
## Metadata ----
if (extract_metadata) {
mun <- climaemet::aemet_munic
x <- mun$municipio[1]
meta <- get_metadata_aemet(
apidest = paste0("/api/prediccion/especifica/municipio/diaria/", x),
verbose = verbose
)
meta <- aemet_hlp_meta_forecast(meta)
return(meta)
}
## Normal call ----
# Make calls on loop for progress bar
final_result <- list() # Store results
# Deactive progressbar if verbose
if (verbose) progress <- FALSE
if (!cli::is_dynamic_tty()) progress <- FALSE
# nolint start
# nocov start
if (progress) {
opts <- options()
options(
cli.progress_bar_style = "fillsquares",
cli.progress_show_after = 3,
cli.spinner = "clock"
)
cli::cli_progress_bar(
format = paste0(
"{cli::pb_spin} AEMET API ({cli::pb_current}/{cli::pb_total}) ",
"| {cli::pb_bar} {cli::pb_percent} ",
"| ETA:{cli::pb_eta} [{cli::pb_elapsed}]"
),
total = length(x), clear = FALSE
)
}
# nocov end
# nolint end
for (id in x) {
if (progress) cli::cli_progress_update() # nocov
df <- try(aemet_forecast_daily_single(id, verbose = verbose), silent = TRUE)
if (inherits(df, "try-error")) {
message(
"\nAEMET API call for '", id, "' returned an error\n",
"Return NULL for this query"
)
df <- NULL
}
final_result <- c(final_result, list(df))
}
# nolint start
# nocov start
if (progress) {
cli::cli_progress_done()
options(
cli.progress_bar_style = opts$cli.progress_bar_style,
cli.progress_show_after = opts$cli.progress_show_after,
cli.spinner = opts$cli.spinner
)
}
# nocov end
# nolint end
# Final tweaks
final_result <- dplyr::bind_rows(final_result)
# Preserve format
final_result$id <- sprintf("%05d", as.numeric(final_result$id))
final_result <- dplyr::as_tibble(final_result)
final_result <- dplyr::distinct(final_result)
final_result <- aemet_hlp_guess(final_result,
preserve = c("id", "municipio")
)
final_result
}
aemet_forecast_daily_single <- function(x, verbose = FALSE) {
if (is.numeric(x)) x <- sprintf("%05d", x)
pred <- get_data_aemet(
apidest = paste0("/api/prediccion/especifica/municipio/diaria/", x),
verbose = verbose
)
pred$elaborado <- as.POSIXct(gsub("T", " ", pred$elaborado),
tz = "Europe/Madrid"
)
# Unnesting this dataset is complex
col_types <- get_col_first_class(pred)
vars <- names(col_types[col_types %in% c("list", "data.frame")])
first_lev <- tidyr::unnest(pred,
col = dplyr::all_of(vars), names_sep = "_",
keep_empty = TRUE
)
# Extract prediccion dia
pred_dia <- first_lev$prediccion_dia[[1]]
master <- first_lev[, names(first_lev) != "prediccion_dia"]
# Adjust
pred_dia$fecha <- as.Date(pred_dia$fecha)
pred_dia <- tibble::as_tibble(pred_dia)
master_end <- dplyr::bind_cols(master, pred_dia)
# Add initial id
master_end$municipio <- x
master_end <- dplyr::relocate(master_end, dplyr::all_of("municipio"),
.before = dplyr::all_of("nombre")
)
return(master_end)
}
# Helper to return first class of column
get_col_first_class <- function(df) {
res <- vapply(df, function(x) {
return(class(x)[1])
}, FUN.VALUE = character(1))
return(res)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.