Description Usage Arguments Value Author(s) References Examples
Either:
- Annotate a matrix/GenomicRatioSet representing 450K or EPIC data with probe weights
(depending on analysis.type
) and chromosomal position, or
- Standardise this information from DSS:::DMLtest()
to the
same data format.
1 2 3 4 |
datatype |
Character string representing the type of data being analysed. |
object |
Either: - A matrix of M-values, with unique Illumina probe IDs as rownames and unique sample IDs as column names or, - A GenomicRatioSet, appropriately annotated or, - Output from |
what |
Does the data matrix contain Beta or M-values? Not needed if object is a GenomicRatioSet. |
arraytype |
Is the data matrix sourced from EPIC or 450K data? Not needed if object is a GenomicRatioSet. |
analysis.type |
|
design |
Study design matrix. Identical context to differential analysis
pipeline in |
contrasts |
Logical denoting whether a |
cont.matrix |
|
fdr |
FDR cutoff (Benjamini-Hochberg) for which CpG sites are individually called
as significant. Used to index default thresholding in dmrcate(). Highly
recommended as the primary thresholding parameter for calling DMRs.
Not used when |
coef |
The column index in |
... |
Extra arguments passed to the |
An object of class "annot", for passing to dmrcate
, containing
the vectors:
ID
: Illumina probe ID or row number
stat
: t-, Wald or F-statistics between phenotypes for each CpG
CHR
: Chromosome which the CpG maps to
pos
: Genomic coordinate (on CHR
) that the CpG maps to
betafc
: The beta fold change according to the given design
indfdr
: Individually-derived FDRs for each CpG
is.sig
: Logical denoting either significance from fdr
(analysis.type %in% c("differential", "ANOVA", "diffVar")
)
or top ventile of variable probes (analysis.type="variability"
)
Tim J. Peters <t.peters@garvan.org.au>
Smyth, G. K. (2005). Limma: linear models for microarray data. In: Bioinformatics and Computational Biology Solutions using R and Bioconductor, R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, W. Huber (eds.), Springer, New York, pages 397-420.
Feng, H., Conneely, K. N., & Wu, H. (2014). A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Research, 42(8), e69.
Phipson, B., & Oshlack, A. (2014). DiffVar: a new method for detecting differential variability with application to methylation in cancer and aging. Genome Biol, 15(9), 465.
Peters T.J., Buckley M.J., Statham, A., Pidsley R., Samaras K., Lord R.V., Clark S.J. and Molloy P.L. De novo identification of differentially methylated regions in the human genome. Epigenetics & Chromatin 2015, 8:6, doi:10.1186/1756-8935-8-6.
1 2 3 4 5 6 7 8 9 10 11 | ## Not run:
data(dmrcatedata)
myMs <- logit2(myBetas)
myMs.noSNPs <- rmSNPandCH(myMs, dist=2, mafcut=0.05)
patient <- factor(sub("-.*", "", colnames(myMs)))
type <- factor(sub(".*-", "", colnames(myMs)))
design <- model.matrix(~patient + type)
myannotation <- cpg.annotate("array", myMs.noSNPs, what="M", arraytype = "450K",
analysis.type="differential", design=design, coef=39)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.