Description Author(s) References Examples
De novo identification and extraction of differentially
methylated regions (DMRs) in the human genome using array and sequencing
data. DMRcate
extracts and annotates differentially methylated regions
(DMRs) using an array-bias corrected smoothed estimate. Functions are
provided for filtering probes possibly confounded by SNPs and
cross-hybridisation. Includes GRanges generation and plotting functions.
Tim J. Peters <t.peters@garvan.org.au>
Peters T.J., Buckley M.J., Statham, A., Pidsley R., Samaras K., Lord R.V., Clark S.J. and Molloy P.L. De novo identification of differentially methylated regions in the human genome. Epigenetics & Chromatin 2015, 8:6, doi:10.1186/1756-8935-8-6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | data(dmrcatedata)
myMs <- logit2(myBetas)
myMs.noSNPs <- rmSNPandCH(myMs, dist=2, mafcut=0.05)
patient <- factor(sub("-.*", "", colnames(myMs)))
type <- factor(sub(".*-", "", colnames(myMs)))
design <- model.matrix(~patient + type)
myannotation <- cpg.annotate("array", myMs.noSNPs, what="M", arraytype = "450K",
analysis.type="differential", design=design, coef=39)
dmrcoutput <- dmrcate(myannotation, lambda=1000, C=2)
results.ranges <- extractRanges(dmrcoutput, genome = "hg19")
groups <- c(Tumour="magenta", Normal="forestgreen")
cols <- groups[as.character(type)]
samps <- c(1:6, 38+(1:6))
DMR.plot(ranges=results.ranges, dmr=1, CpGs=myBetas, phen.col=cols, genome="hg19", samps=samps)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.