ea_BLR_DL_PT: Diffusion probability for the Exact Algorithm for Langevin...

View source: R/BLR_fusion.R

ea_BLR_DL_PTR Documentation

Diffusion probability for the Exact Algorithm for Langevin diffusion for Bayesian logistic regression

Description

Simulate Langevin diffusion using the Exact Algorithm where target is the posterior for a logistic regression model with Gaussian priors

Usage

ea_BLR_DL_PT(
  dim,
  x0,
  y,
  s,
  t,
  data,
  transformed_design_mat,
  prior_means,
  prior_variances,
  C,
  precondition_mat,
  transform_mats,
  cv_location = "hypercube_centre",
  diffusion_estimator,
  beta_NB = 10,
  gamma_NB_n_points = 2,
  local_bounds = TRUE,
  logarithm
)

Arguments

dim

dimension of the predictors (= p+1)

x0

start value (vector of length dim)

y

end value (vector of length dim)

s

start time

t

end time

data

list of length 4 where data[[c]]$y is the vector for y responses and data[[c]]$X is the design matrix for the covariates for sub-posterior c, data[[c]]$full_data_count is the unique rows of the full data set with their counts and data[[c]]$design_count is the unique rows of the design matrix and their counts

prior_means

prior for means of predictors

prior_variances

prior for variances of predictors

C

overall number of sub-posteriors

precondition_mat

precondition matrix

transform_mats

list of transformation matrices where transform_mats$to_Z is the transformation matrix to Z space and transform_mats$to_X is the transformation matrix to X space

cv_location

string to determine what the location of the control variate should be. Must be either 'mode' where the MLE estimator will be used or 'hypercube_centre' (default) to use the centre of the simulated hypercube

diffusion_estimator

choice of unbiased estimator for the Exact Algorithm between "Poisson" (default) for Poisson estimator and "NB" for Negative Binomial estimator

beta_NB

beta parameter for Negative Binomial estimator (default 10)

gamma_NB_n_points

number of points used in the trapezoidal estimation of the integral found in the mean of the negative binomial estimator (default is 2)

local_bounds

logical value indicating if local bounds for the phi function are used (default is TRUE)

logarithm

logical value to determine if log probability is returned (TRUE) or not (FALSE)

Value

acceptance probability of simulating Langevin diffusion where target is the posterior for a logistic regression model with Gaussian priors


rchan26/hierarchicalFusion documentation built on Sept. 11, 2022, 10:30 p.m.