ea_BRR_DL_PT: Diffusion probability for the Exact Algorithm for Langevin...

View source: R/BRR_fusion.R

ea_BRR_DL_PTR Documentation

Diffusion probability for the Exact Algorithm for Langevin diffusion for Bayesian robust regression

Description

Simulate Langevin diffusion using the Exact Algorithm where target is the posterior for a robust regression model with Gaussian priors

Usage

ea_BRR_DL_PT(
  dim,
  x0,
  y,
  s,
  t,
  data,
  transformed_design_mat,
  nu,
  sigma,
  prior_means,
  prior_variances,
  C,
  precondition_mat,
  transform_mats,
  diffusion_estimator,
  beta_NB = 10,
  gamma_NB_n_points = 2,
  logarithm
)

Arguments

dim

dimension of the predictors (= p+1)

x0

start value (vector of length dim)

y

end value (vector of length dim)

s

start time

t

end time

data

list of length 4 where data[[c]]$y is the vector for y responses and data[[c]]$X is the design matrix for the covariates for sub-posterior c

nu

degrees of freedom in t-distribution

sigma

scale parameter in t-distribution

prior_means

prior for means of predictors

prior_variances

prior for variances of predictors

C

overall number of sub-posteriors

precondition_mat

precondition matrix

transform_mats

list of transformation matrices where transform_mats$to_Z is the transformation matrix to Z space and transform_mats$to_X is the transformation matrix to X space

diffusion_estimator

choice of unbiased estimator for the Exact Algorithm between "Poisson" (default) for Poisson estimator and "NB" for Negative Binomial estimator

beta_NB

beta parameter for Negative Binomial estimator (default 10)

gamma_NB_n_points

number of points used in the trapezoidal estimation of the integral found in the mean of the negative binomial estimator (default is 2)

logarithm

logical value to determine if log probability is returned (TRUE) or not (FALSE)

Value

acceptance probability of simulating Langevin diffusion where target is the posterior for a robust regression model with Gaussian priors


rchan26/hierarchicalFusion documentation built on Sept. 11, 2022, 10:30 p.m.