View source: R/multivariate_Gaussian_fusion.R
ea_multiGaussian_DL_PT | R Documentation |
Simulate Langevin diffusion using the Exact Algorithm where pi = multivariate tempered Gaussian distribution
ea_multiGaussian_DL_PT( x0, y, s, t, dim, mu, inv_Sigma, inv_Sigma_Z = transform_mats$to_X %*% inv_Sigma %*% transform_mats$to_X, beta, precondition_mat, transform_mats, diffusion_estimator = "Poisson", beta_NB = 10, gamma_NB_n_points = 2, logarithm )
x0 |
start value (vector of length dim) |
y |
end value (vector of length dim) |
s |
start time |
t |
end time |
dim |
dimension |
mu |
vector of length dim for mean |
inv_Sigma |
dim x dim inverse covariance matrix |
beta |
real value |
precondition_mat |
precondition matrix (if non-identity matrix, it should be the estimated covariance matrix, i.e. a matrix close to solve(inv_Sigma) - could run into problems if this is not the case since a trick is used to compute the bounds to avoid evaluating phi at 3^d points) |
transform_mats |
list of transformation matrices where transform_mats$to_Z is the transformation matrix to Z space and transform_mats$to_X is the transformation matrix to X space |
diffusion_estimator |
choice of unbiased estimator for the Exact Algorithm between "Poisson" (default) for Poisson estimator and "NB" for Negative Binomial estimator |
beta_NB |
beta parameter for Negative Binomial estimator (default 10) |
gamma_NB_n_points |
number of points used in the trapezoidal estimation of the integral found in the mean of the negative binomial estimator (default is 2) |
logarithm |
logical value to determine if log probability is returned (TRUE) or not (FALSE) |
acceptance probability of simulating Langevin diffusion with pi = multivariate tempered Gaussian distribution
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.