ea_biGaussian_DL_PT: Diffusion probability for the Exact Algorithm for Langevin...

View source: R/bivariate_Gaussian_fusion.R

ea_biGaussian_DL_PTR Documentation

Diffusion probability for the Exact Algorithm for Langevin diffusion for bivariate tempered Gaussian distribution

Description

Simulate Langevin diffusion using the Exact Algorithm where pi = bivariate tempered Gaussian distribution

Usage

ea_biGaussian_DL_PT(
  x0,
  y,
  s,
  t,
  mean_vec,
  sd_vec,
  corr,
  beta,
  precondition_mat,
  transform_mats,
  diffusion_estimator = "Poisson",
  beta_NB = 10,
  gamma_NB_n_points = 2,
  logarithm
)

Arguments

x0

start value (vector of length 2)

y

end value (vector of length 2)

s

start time

t

end time

mean_vec

vector of length 2 for mean

sd_vec

vector of length 2 for standard deviation

corr

correlation value between component 1 and component 2

beta

real value

precondition_mat

precondition matrix

transform_mats

list of transformation matrices where transform_mats$to_Z is the transformation matrix to Z space and transform_mats$to_X is the transformation matrix to X space

diffusion_estimator

choice of unbiased estimator for the Exact Algorithm between "Poisson" (default) for Poisson estimator and "NB" for Negative Binomial estimator

beta_NB

beta parameter for Negative Binomial estimator (default 10)

gamma_NB_n_points

number of points used in the trapezoidal estimation of the integral found in the mean of the negative binomial estimator (default is 2)

logarithm

logical value to determine if log probability is returned (TRUE) or not (FALSE)

Value

acceptance probability of simulating Langevin diffusion with pi = bivariate tempered Gaussian distribution


rchan26/hierarchicalFusion documentation built on Sept. 11, 2022, 10:30 p.m.