#' phi-function for bivariate tempered Gaussian distribution
#'
#' phi-function for the Exact Algorithm for bivariate tempered Gaussian distribution
#'
#' @param x vector of length 2
#' @param mean_vec vector of length 2 for mean
#' @param sd_vec vector of length 2 for standard deviation
#' @param corr correlation value between component 1 and component 2
#' @param beta real value
#' @param precondition_mat precondition matrix
#' @param transform_mat the transformation matrix
#'
#' @return real value
#'
#' @export
ea_phi_biGaussian_DL <- function(x,
mean_vec,
sd_vec,
corr,
beta,
precondition_mat,
transform_mat) {
if (is.vector(x)) {
if (length(x)==2) {
return(ea_phi_biGaussian_DL_vec(x = x,
mean_vec = mean_vec,
sd_vec = sd_vec,
corr = corr,
beta = beta,
precondition_mat = precondition_mat,
transform_mat = transform_mat))
}
} else if (is.matrix(x)) {
if (dim(x)[2]==2) {
return(ea_phi_biGaussian_DL_matrix(x = x,
mean_vec = mean_vec,
sd_vec = sd_vec,
corr = corr,
beta = beta,
precondition_mat = precondition_mat,
transform_mat = transform_mat))
}
}
stop("ea_phi_biGaussian_DL: x must be a vector or length 2 or a matrix with 2 columns")
}
#' Diffusion probability for the Exact Algorithm for Langevin diffusion for
#' bivariate tempered Gaussian distribution
#'
#' Simulate Langevin diffusion using the Exact Algorithm where pi =
#' bivariate tempered Gaussian distribution
#'
#' @param x0 start value (vector of length 2)
#' @param y end value (vector of length 2)
#' @param s start time
#' @param t end time
#' @param mean_vec vector of length 2 for mean
#' @param sd_vec vector of length 2 for standard deviation
#' @param corr correlation value between component 1 and component 2
#' @param beta real value
#' @param precondition_mat precondition matrix
#' @param transform_mats list of transformation matrices where
#' transform_mats$to_Z is the transformation matrix to Z space
#' and transform_mats$to_X is the transformation matrix to
#' X space
#' @param diffusion_estimator choice of unbiased estimator for the Exact Algorithm
#' between "Poisson" (default) for Poisson estimator
#' and "NB" for Negative Binomial estimator
#' @param beta_NB beta parameter for Negative Binomial estimator (default 10)
#' @param gamma_NB_n_points number of points used in the trapezoidal estimation
#' of the integral found in the mean of the negative
#' binomial estimator (default is 2)
#' @param logarithm logical value to determine if log probability is
#' returned (TRUE) or not (FALSE)
#'
#' @return acceptance probability of simulating Langevin diffusion with pi =
#' bivariate tempered Gaussian distribution
#'
#' @export
ea_biGaussian_DL_PT <- function(x0,
y,
s,
t,
mean_vec,
sd_vec,
corr,
beta,
precondition_mat,
transform_mats,
diffusion_estimator = 'Poisson',
beta_NB = 10,
gamma_NB_n_points = 2,
logarithm) {
# transform to preconditioned space
z0 <- transform_mats$to_Z %*% x0
zt <- transform_mats$to_Z %*% y
# simulate layer information
bes_layers <- layeredBB::multi_bessel_layer_simulation(dim = 2,
x = z0,
y = zt,
s = s,
t = t,
mult = 0.1)
lbound_Z <- sapply(1:2, function(d) bes_layers[[d]]$L)
ubound_Z <- sapply(1:2, function(d) bes_layers[[d]]$U)
# calculate the lower and upper bounds of phi
bounds <- ea_phi_biGaussian_DL_bounds(mean_vec = mean_vec,
sd_vec = sd_vec,
corr = corr,
beta = beta,
precondition_mat = precondition_mat,
transform_to_Z = transform_mats$to_Z,
transform_to_X = transform_mats$to_X,
lower = lbound_Z,
upper = ubound_Z)
LZ <- bounds$LB
UZ <- bounds$UB
PHI <- ea_phi_biGaussian_DL_LB(mean_vec = mean_vec,
sd_vec = sd_vec,
corr = corr,
beta = beta,
precondition_mat = precondition_mat)
if (diffusion_estimator=='Poisson') {
# simulate the number of points to simulate from Poisson distribution
kap <- rpois(n = 1, lambda = (UZ-LZ)*(t-s))
log_acc_prob <- 0
if (kap > 0) {
layered_bb <- layeredBB::multi_layered_brownian_bridge(dim = 2,
x = z0,
y = zt,
s = s,
t = t,
bessel_layers = bes_layers,
times = runif(kap, s, t))
phi <- ea_phi_biGaussian_DL_matrix(x = t(layered_bb$simulated_path[1:2,]),
mean_vec = mean_vec,
sd_vec = sd_vec,
corr = corr,
beta = beta,
precondition_mat = precondition_mat,
transform_mat = transform_mats$to_X)
log_acc_prob <- sum(log(UZ-phi))
}
if (logarithm) {
return(-(LZ-PHI)*(t-s) - kap*log(UZ-LZ) + log_acc_prob)
} else {
return(exp(-(LZ-PHI)*(t-s) - kap*log(UZ-LZ) + log_acc_prob))
}
} else if (diffusion_estimator=='NB') {
# integral estimate for gamma in NB estimator
h <- (t-s)/(gamma_NB_n_points-1)
times_to_eval <- seq(from = s, to = t, by = h)
integral_estimate <- gamma_NB_biGaussian(times = times_to_eval,
h = h,
x0 = z0,
y = zt,
s = s,
t = t,
mean_vec = mean_vec,
sd_vec = sd_vec,
corr = corr,
beta = beta,
precondition_mat = precondition_mat,
transform_mat = transform_mats$to_X)
gamma_NB <- (t-s)*UZ - integral_estimate
kap <- rnbinom(1, size = beta_NB, mu = gamma_NB)
log_acc_prob <- 0
if (kap > 0) {
layered_bb <- layeredBB::multi_layered_brownian_bridge(dim = 2,
x = z0,
y = zt,
s = s,
t = t,
bessel_layers = bes_layers,
times = runif(kap, s, t))
phi <- ea_phi_biGaussian_DL_matrix(x = t(layered_bb$simulated_path[1:2,]),
mean_vec = mean_vec,
sd_vec = sd_vec,
corr = corr,
beta = beta,
precondition_mat = precondition_mat,
transform_mat = transform_mats$to_X)
log_acc_prob <- sum(log(UZ-phi))
}
log_middle_term <- kap*log(t-s) + lgamma(beta_NB) + (beta_NB+kap)*log(beta_NB+gamma_NB) -
lgamma(beta_NB+kap) - beta_NB*log(beta_NB) - kap*log(gamma_NB)
if (logarithm) {
return(-(UZ-PHI)*(t-s) + log_middle_term + log_acc_prob)
} else {
return(exp(-(UZ-PHI)*(t-s) + log_middle_term + log_acc_prob))
}
} else {
stop("ea_biGaussian_DL_PT: diffusion_estimator must be set to either \'Poisson\' or \'NB\'")
}
}
#' Generalised Monte Carlo Fusion (rejection sampling) [on a single core]
#'
#' Generalised Monte Carlo Fusion with bivariate Gaussian target
#'
#' @param N number of samples
#' @param m number of sub-posteriors to combine
#' @param time time T for fusion algorithm
#' @param samples_to_fuse list of length m, where samples_to_fuse[c] containing
#' the samples for the c-th sub-posterior
#' @param mean_vec vector of length 2 for mean
#' @param sd_vec vector of length 2 for standard deviation
#' @param corr correlation value between component 1 and component 2
#' @param betas vector of length m, where betas[c] is the inverse temperature (beta)
#' for c-th sub-posterior (can also pass in one number if they are all
#' at the same inverse temperature)
#' @param precondition_matrices list of length m, where precondition_matrices[[c]]
#' is the precondition matrix for sub-posterior c
#'
#' @return samples: fusion samples
#' @return iters_rho: number of iterations from the first accept/reject step (rho)
#' @return iters_Q: number of iterations from the second (diffusion) accept/reject step (Q)
#'
#' @export
fusion_biGaussian <- function(N,
m,
time,
samples_to_fuse,
mean_vec,
sd_vec,
corr,
betas,
precondition_matrices,
inv_precondition_matrices) {
if (!is.list(samples_to_fuse) | (length(samples_to_fuse)!=m)) {
stop("fusion_biGaussian: samples_to_fuse must be a list of length m")
} else if (!all(sapply(samples_to_fuse, is.matrix)) | !all(sapply(samples_to_fuse, function(core) ncol(core)==2))) {
stop("fusion_biGaussian: the sub-posteriors in samples_to_fuse must be matrices with two columns")
} else if (!is.vector(mean_vec) | (length(mean_vec)!=2)) {
stop("fusion_biGaussian: mean_vec must be a vector of length 2")
} else if (!is.vector(sd_vec) | (length(sd_vec)!=2)) {
stop("fusion_biGaussian: sd_vec must be a vector of length 2")
} else if (!is.vector(betas) | (length(betas)!=m)) {
stop("fusion_biGaussian: betas must be a vector of length m")
} else if (!is.list(precondition_matrices) | (length(precondition_matrices)!=m)) {
stop("fusion_biGaussian: precondition_matrices must be a list of length m")
}
inv_precondition_matrices <- lapply(precondition_matrices, solve)
transform_matrices <- lapply(1:m, function(c) {
list('to_Z' = expm::sqrtm(inv_precondition_matrices[[c]]),
'to_X' = expm::sqrtm(precondition_matrices[[c]]))
})
fusion_samples <- matrix(data = NA, nrow = N, ncol = 2)
i <- 0; iters_rho <- 0; iters_Q <- 0
proposal_cov <- calculate_proposal_cov(time = time, weights = inv_precondition_matrices)
inverse_sum_inv_precondition_matrices <- inverse_sum_matrices(matrices = inv_precondition_matrices)
while (i < N) {
iters_rho <- iters_rho + 1
x <- t(sapply(samples_to_fuse, function(core) core[sample(nrow(core), 1),]))
x_mean <- weighted_mean_multivariate(matrix = x,
weights = inv_precondition_matrices,
inverse_sum_weights = inverse_sum_inv_precondition_matrices)
log_rho_prob <- log_rho_multivariate(x = x,
x_mean = x_mean,
time = time,
inv_precondition_matrices = inv_precondition_matrices)
if (log(runif(1, 0, 1)) < log_rho_prob) {
iters_Q <- iters_Q + 1
y <- as.vector(mvrnormArma(N = 1, mu = x_mean, Sigma = proposal_cov))
log_Q_prob <- sum(sapply(1:m, function(c) {
ea_biGaussian_DL_PT(x0 = x[c,],
y = y,
s = 0,
t = time,
mean_vec = mean_vec,
sd_vec = sd_vec,
corr = corr,
beta = betas[c],
precondition_mat = precondition_matrices[[c]],
transform_mats = transform_matrices[[c]],
diffusion_estimator = 'Poisson',
logarithm = TRUE)
}))
if (log(runif(1, 0, 1)) < log_Q_prob) {
i <- i+1
fusion_samples[i,] <- y
}
}
}
return(list('samples' = fusion_samples,
'iters_rho' = iters_rho,
'iters_Q' = iters_Q))
}
#' Generalised Monte Carlo Fusion (rejection sampling) [parallel]
#'
#' Generalised Monte Carlo Fusion with bivariate Gaussian target
#'
#' @param N number of samples
#' @param m number of sub-posteriors to combine
#' @param time time T for fusion algorithm
#' @param samples_to_fuse list of length m, where samples_to_fuse[[c]]
#' contains the samples for the c-th sub-posterior
#' @param mean_vec vector of length 2 for mean
#' @param sd_vec vector of length 2 for standard deviation
#' @param corr correlation value between component 1 and component 2
#' @param betas vector of length c, where betas[c] is the inverse temperature
#' value for c-th posterior
#' @param precondition_matrices list of length m, where precondition_matrices[[c]]
#' is the precondition matrix for sub-posterior c
#' @param seed seed number - default is NULL, meaning there is no seed
#' @param n_cores number of cores to use
#'
#' @return A list with components:
#' \describe{
#' \item{samples}{fusion samples}
#' \item{rho}{acceptance rate for rho step}
#' \item{Q}{acceptance rate for Q step}
#' \item{rhoQ}{overall acceptance rate}
#' \item{time}{run-time of fusion sampler}
#' \item{rho_iterations}{number of iterations for rho step}
#' \item{Q_iterations}{number of iterations for Q step}
#' \item{precondition_matrices}{list of length 2 where precondition_matrices[[2]]
#' are the pre-conditioning matrices that were used
#' and precondition_matrices[[1]] are the combined
#' precondition matrices}
#' }
#'
#' @export
parallel_fusion_biGaussian <- function(N,
m,
time,
samples_to_fuse,
mean_vec,
sd_vec,
corr,
betas,
precondition_matrices,
seed = NULL,
n_cores = parallel::detectCores()) {
if (!is.list(samples_to_fuse) | (length(samples_to_fuse)!=m)) {
stop("parallel_fusion_biGaussian: samples_to_fuse must be a list of length m")
} else if (!all(sapply(samples_to_fuse, is.matrix))) {
stop("parallel_fusion_biGaussian: the sub-posteriors in samples_to_fuse must be matrices")
} else if (!all(sapply(samples_to_fuse, function(core) ncol(core)==2))) {
stop("parallel_fusion_biGaussian: the sub-posteriors in samples_to_fuse must be matrices with 2 columns")
} else if (!is.vector(mean_vec) | (length(mean_vec)!=2)) {
stop("parallel_fusion_biGaussian: mean_vec must be a vector of length 2")
} else if (!is.vector(sd_vec) | (length(sd_vec)!=2)) {
stop("parallel_fusion_biGaussian: sd_vec must be a vector of length 2")
} else if (!is.vector(betas) | (length(betas)!=m)) {
stop("parallel_fusion_biGaussian: betas must be a vector of length m")
} else if (!is.list(precondition_matrices) | (length(precondition_matrices)!=m)) {
stop("parallel_fusion_biGaussian: precondition_matrices must be a list of length m")
}
######### creating parallel cluster
cl <- parallel::makeCluster(n_cores)
parallel::clusterExport(cl, envir = environment(), varlist = ls())
parallel::clusterExport(cl, varlist = ls("package:DCFusion"))
parallel::clusterExport(cl, varlist = ls("package:layeredBB"))
if (!is.null(seed)) {
parallel::clusterSetRNGStream(cl, iseed = seed)
}
# how many samples do we need for each core?
if (N < n_cores) {
samples_per_core <- rep(1, N)
} else {
samples_per_core <- rep(floor(N/n_cores), n_cores)
if (sum(samples_per_core)!=N) {
remainder <- N %% n_cores
samples_per_core[1:remainder] <- samples_per_core[1:remainder] + 1
}
}
# run fusion in parallel
pcm <- proc.time()
fused <- parallel::parLapply(cl, X = 1:length(samples_per_core), fun = function(core) {
fusion_biGaussian(N = samples_per_core[core],
m = m,
time = time,
samples_to_fuse = samples_to_fuse,
mean_vec = mean_vec,
sd_vec = sd_vec,
corr = corr,
betas = betas,
precondition_matrices = precondition_matrices)
})
final <- proc.time() - pcm
parallel::stopCluster(cl)
# ---------- return samples and acceptance probabilities
samples <- do.call(rbind, lapply(1:length(samples_per_core), function(i) fused[[i]]$samples))
rho_iterations <- sum(sapply(1:length(samples_per_core), function(i) fused[[i]]$iters_rho))
Q_iterations <- sum(sapply(1:length(samples_per_core), function(i) fused[[i]]$iters_Q))
rho_acc <- Q_iterations / rho_iterations
Q_acc <- N / Q_iterations
rhoQ_acc <- N / rho_iterations
if (identical(precondition_matrices, rep(list(diag(1, 2)), m))) {
new_precondition_matrices <- list(diag(1, 2), precondition_matrices)
} else {
new_precondition_matrices <- list(inverse_sum_matrices(lapply(precondition_matrices, solve)),
precondition_matrices)
}
return(list('samples' = samples,
'rho' = rho_acc,
'Q' = Q_acc,
'rhoQ '= rhoQ_acc,
'time' = final['elapsed'],
'rho_iterations' = rho_iterations,
'Q_iterations' = Q_iterations,
'precondition_matrices' = new_precondition_matrices))
}
#' (Balanced Binary) D&C Monte Carlo Fusion (rejection sampling)
#'
#' (Balanced Binary) D&C Monte Carlo Fusion with bivariate Gaussian target
#'
#' @param N_schedule vector of length (L-1), where N_schedule[l] is the number
#' of samples per node at level l
#' @param m_schedule vector of length (L-1), where m_schedule[l] is the number
#' of samples to fuse for level l
#' @param time_schedule vector of length(L-1), where time_schedule[l] is the
#' time chosen for Fusion at level l
#' @param base_samples list of length (1/start_beta), where base_samples[[c]]
#' contains the samples for the c-th node in the level
#' @param L total number of levels in the hierarchy
#' @param mean_vec vector of length 2 for mean
#' @param sd_vec vector of length 2 for standard deviation
#' @param corr correlation value between component 1 and component 2
#' @param start_beta beta for the base level
#' @param precondition either a logical value to determine if preconditioning matrices are
#' used (TRUE - and is set to be the variance of the sub-posterior samples)
#' or not (FALSE - and is set to be the identity matrix for all sub-posteriors),
#' or a list of length (1/start_beta) where precondition[[c]]
#' is the preconditioning matrix for sub-posterior c. Default is TRUE
#' @param seed seed number - default is NULL, meaning there is no seed
#' @param n_cores number of cores to use
#'
#' @return A list with components:
#' \describe{
#' \item{samples}{list of length (L-1), where samples[[l]][[i]] are the samples
#' for level l, node i}
#' \item{time}{list of length (L-1), where time[[l]][[i]] is the run time for
#' level l, node i}
#' \item{rho_acc}{list of length (L-1), where rho_acc[[l]][i] is the acceptance
#' rate for first fusion step for level l, node i}
#' \item{Q_acc}{list of length (L-1), where Q_acc[[l]][i] is the acceptance
#' rate for second fusion step for level l, node i}
#' \item{rhoQ_acc}{list of length (L-1), where rhoQ_acc[[l]][i] is the overall
#' acceptance rate for fusion for level l, node i}
#' \item{diffusion_times}{vector of length (L-1), where diffusion_times[l] are
#' the times for fusion in level l (= time_schedule)}
#' \item{precondition_matrices}{preconditioning matrices used in the algorithm
#' for each node}
#' \item{overall_rho}{vector of length (L-1), where overall_rho[k] is overall
#' acceptance rate for rho of level l}
#' \item{overall_Q}{vector of length (L-1), where overall_Q[k] is overall
#' acceptance rate for Q of level l}
#' \item{overall_rhoQ}{vector of length (L-1), where overall_rhoQ[k] is overall
#' acceptance rate for rho*Q of level l}
#' \item{overall_time}{vector of length (L-1), where overall_time[k] is
#' overall taken for level l}
#' }
#'
#' @export
bal_binary_fusion_biGaussian <- function(N_schedule,
m_schedule,
time_schedule,
base_samples,
L,
mean_vec,
sd_vec,
corr,
start_beta,
precondition = TRUE,
seed = NULL,
n_cores = parallel::detectCores()) {
if (!is.vector(N_schedule) | (length(N_schedule)!=(L-1))) {
stop("bal_binary_fusion_biGaussian: N_schedule must be a vector of length (L-1)")
} else if (!is.vector(m_schedule) | (length(m_schedule)!=(L-1))) {
stop("bal_binary_fusion_biGaussian: m_schedule must be a vector of length (L-1)")
} else if (!is.vector(time_schedule) | (length(time_schedule)!=(L-1))) {
stop("bal_binary_fusion_biGaussian: time_schedule must be a vector of length (L-1)")
} else if (!is.list(base_samples) | (length(base_samples)!=(1/start_beta))) {
stop("bal_binary_fusion_biGaussian: base_samples must be a list of length (1/start_beta)")
} else if (!all(sapply(base_samples, is.matrix))) {
stop("bal_binary_fusion_biGaussian: the sub-posterior samples in base_samples must be matrices")
} else if (!all(sapply(base_samples, function(core) ncol(core)==2))) {
stop("bal_binary_fusion_biGaussian: the sub-posterior samples in base_samples must be matrices with 2 columns")
} else if (!is.vector(mean_vec) | (length(mean_vec)!=2)) {
stop("bal_binary_fusion_biGaussian: mean_vec must be a vector of length 2")
} else if (!is.vector(sd_vec) | (length(sd_vec)!=2)) {
stop("bal_binary_fusion_biGaussian: sd_vec must be a vector of length 2")
}
if (is.vector(m_schedule) & (length(m_schedule)==(L-1))) {
for (l in (L-1):1) {
if (((1/start_beta)/prod(m_schedule[(L-1):l]))%%1!=0) {
stop("bal_binary_fusion_biGaussian: check that (1/start_beta)/prod(m_schedule[(L-1):l])
is an integer for l=L-1,...,1")
}
}
} else {
stop("bal_binary_fusion_biGaussian: m_schedule must be a vector of length (L-1)")
}
m_schedule <- c(m_schedule, 1)
hier_samples <- list()
hier_samples[[L]] <- base_samples
time <- list()
rho <- list()
Q <- list()
rhoQ <- list()
overall_rho <- rep(0, L-1)
overall_Q <- rep(0, L-1)
overall_rhoQ <- rep(0, L-1)
overall_time <- rep(0, L-1)
precondition_matrices <- list()
if (is.logical(precondition)) {
if (precondition) {
precondition_matrices[[L]] <- lapply(base_samples, cov)
} else {
precondition_matrices[[L]] <- rep(list(diag(1, 2)), (1/start_beta))
}
} else if (is.list(precondition)) {
if (length(precondition)==(1/start_beta) & all(sapply(precondition, is.matrix))) {
if (all(sapply(precondition, function(sub) ncol(sub)==2))) {
precondition_matrices[[L]] <- precondition
}
}
} else {
stop("bal_binary_fusion_biGaussian: precondition must be a logical indicating
whether or not a preconditioning matrix should be used, or a list of
length C, where precondition[[c]] is the preconditioning matrix for
the c-th sub-posterior")
}
cat('Starting bal_binary fusion \n', file = 'bal_binary_fusion_biGaussian.txt')
for (k in ((L-1):1)) {
n_nodes <- max((1/start_beta)/prod(m_schedule[L:k]), 1)
cat('########################\n', file = 'bal_binary_fusion_biGaussian.txt',
append = T)
cat('Starting to fuse', m_schedule[k], 'densities of pi^beta, where beta =',
prod(m_schedule[L:(k+1)]), '/', (1/start_beta), 'for level', k, 'with time',
time_schedule[k], ', which is using', parallel::detectCores(), 'cores\n',
file = 'bal_binary_fusion_biGaussian.txt', append = T)
cat('There are', n_nodes, 'nodes at this level each giving', N_schedule[k],
'samples for beta =', prod(m_schedule[L:k]), '/', (1/start_beta),
'\n', file = 'bal_binary_fusion_biGaussian.txt', append = T)
cat('########################\n', file = 'bal_binary_fusion_biGaussian.txt',
append = T)
fused <- lapply(X = 1:n_nodes, FUN = function(i) {
previous_nodes <- ((m_schedule[k]*i)-(m_schedule[k]-1)):(m_schedule[k]*i)
precondition_mats <- precondition_matrices[[k+1]][previous_nodes]
parallel_fusion_biGaussian(N = N_schedule[k],
m = m_schedule[k],
time = time_schedule[k],
samples_to_fuse = hier_samples[[k+1]][previous_nodes],
mean_vec = mean_vec,
sd_vec = sd_vec,
corr = corr,
betas = rep(prod(m_schedule[L:(k+1)])*(start_beta), m_schedule[k]),
precondition_matrices = precondition_mats,
seed = seed,
n_cores = n_cores)
})
cat('Completed fusion for level', k, '\n', file = 'bal_binary_fusion_biGaussian.txt',
append = T)
cat('########################\n', file = 'bal_binary_fusion_biGaussian.txt',
append = T)
# need to combine the correct samples
hier_samples[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$samples)
rho[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$rho)
Q[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$Q)
rhoQ[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$rhoQ)
time[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$time)
sum_rho_iterations <- sum(unlist(lapply(1:n_nodes, function(i) fused[[i]]$rho_iterations)))
sum_Q_iterations <- sum(unlist(lapply(1:n_nodes, function(i) fused[[i]]$Q_iterations)))
overall_rho[k] <- sum_Q_iterations / sum_rho_iterations
overall_Q[k] <- N_schedule[k]*n_nodes / sum_Q_iterations
overall_rhoQ[k] <- N_schedule[k]*n_nodes / sum_rho_iterations
overall_time[k] <- sum(unlist(time[[k]]))
precondition_matrices[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$precondition_matrices[[1]])
}
cat('Completed bal_binary fusion\n', file = 'bal_binary_fusion_biGaussian.txt', append = T)
if (length(hier_samples[[1]])==1) {
hier_samples[[1]] <- hier_samples[[1]][[1]]
time[[1]] <- time[[1]][[1]]
rho[[1]] <- rho[[1]][[1]]
Q[[1]] <- Q[[1]][[1]]
rhoQ[[1]] <- rhoQ[[1]][[1]]
precondition_matrices[[1]] <- precondition_matrices[[1]][[1]]
}
return(list('samples' = hier_samples,
'time' = time,
'rho_acc' = rho,
'Q_acc' = Q,
'rhoQ_acc' = rhoQ,
'diffusion_times' = time_schedule,
'precondition_matrices' = precondition_matrices,
'overall_rho' = overall_rho,
'overall_Q' = overall_Q,
'overall_rhoQ' = overall_rhoQ,
'overall_time' = overall_time))
}
#' (Progressive) D&C Monte Carlo Fusion (rejection sampling)
#'
#' (Progressive) D&C Monte Carlo Fusion with bivariate Gaussian target
#'
#' @param N_schedule vector of length (L-1), where N_schedule[l] is the number
#' of samples per node at level l
#' @param time_schedule vector of length(L-1), where time_schedule[l] is the
#' time chosen for Fusion at level l
#' @param mean_vec vector of length 2 for mean
#' @param sd_vec vector of length 2 for standard deviation
#' @param corr correlation value between component 1 and component 2
#' @param start_beta beta for the base level
#' @param base_samples list of length (1/start_beta), where base_samples[[c]]
#' contains the samples for the c-th node in the level
#' @param precondition either a logical value to determine if preconditioning matrices are
#' used (TRUE - and is set to be the variance of the sub-posterior samples)
#' or not (FALSE - and is set to be the identity matrix for all sub-posteriors),
#' or a list of length (1/start_beta) where precondition[[c]]
#' is the preconditioning matrix for sub-posterior c. Default is TRUE
#' @param seed seed number - default is NULL, meaning there is no seed
#' @param n_cores number of cores to use
#'
#' @return A list with components:
#' \describe{
#' \item{samples}{list of length (L-1), where samples[[l]][[i]] are the samples
#' for level l, node i}
#' \item{time}{list of length (L-1), where time[[l]][[i]] is the run time for
#' level l, node i}
#' \item{rho_acc}{list of length (L-1), where rho_acc[[l]][i] is the acceptance
#' rate for first fusion step for level l, node i}
#' \item{Q_acc}{list of length (L-1), where Q_acc[[l]][i] is the acceptance
#' rate for second fusion step for level l, node i}
#' \item{rhoQ_acc}{list of length (L-1), where rhoQ_acc[[l]][i] is the overall
#' acceptance rate for fusion for level l, node i}
#' \item{diffusion_times}{vector of length (L-1), where diffusion_times[l] are
#' the times for fusion in level l (= time_schedule)}
#' \item{precondition_matrices}{preconditioning matrices used in the algorithm
#' for each node}
#' }
#'
#' @export
progressive_fusion_biGaussian <- function(N_schedule,
time_schedule,
mean_vec,
sd_vec,
corr,
start_beta,
base_samples,
precondition = TRUE,
seed = NULL,
n_cores = parallel::detectCores()) {
if (!is.vector(N_schedule) | (length(N_schedule)!=(1/start_beta)-1)) {
stop("progressive_fusion_biGaussian: N_schedule must be a vector of length ((1/start_beta)-1)")
} else if (!is.vector(time_schedule) | (length(time_schedule)!=(1/start_beta)-1)) {
stop("progressive_fusion_biGaussian: time_schedule must be a vector of length ((1/start_beta)-1)")
} else if (!is.list(base_samples) | (length(base_samples)!=(1/start_beta))) {
stop("progressive_fusion_biGaussian: base_samples must be a list of length (1/start_beta)")
} else if (!all(sapply(base_samples, is.matrix))) {
stop("progressive_fusion_biGaussian: the sub-posterior samples in base_samples must be matrices")
} else if (!all(sapply(base_samples, function(core) ncol(core)==2))) {
stop("progressive_fusion_biGaussian: the sub-posterior samples in base_samples must be matrices with 2 columns")
} else if (!is.vector(mean_vec) | (length(mean_vec)!=2)) {
stop("progressive_fusion_biGaussian: mean_vec must be a vector of length 2")
} else if (!is.vector(sd_vec) | (length(sd_vec)!=2)) {
stop("progressive_fusion_biGaussian: sd_vec must be a vector of length 2")
}
prog_samples <- list()
prog_samples[[(1/start_beta)]] <- base_samples
time <- rep(0, (1/start_beta)-1)
rho <- rep(0, (1/start_beta)-1)
Q <- rep(0, (1/start_beta)-1)
rhoQ <- rep(0, (1/start_beta)-1)
precondition_matrices <- list()
if (is.logical(precondition)) {
if (precondition) {
precondition_matrices[[(1/start_beta)]] <- lapply(base_samples, cov)
} else {
precondition_matrices[[(1/start_beta)]] <- rep(list(diag(1, 2)), (1/start_beta))
}
} else if (is.list(precondition)) {
if (length(precondition)==(1/start_beta) & all(sapply(precondition, is.matrix))) {
if (all(sapply(precondition, function(sub) ncol(sub)==2))) {
precondition_matrices[[(1/start_beta)]] <- precondition
}
}
} else {
stop("progressive_fusion_biGaussian: precondition must be a logical indicating
whether or not a preconditioning matrix should be used, or a list of
length C, where precondition[[c]] is the preconditioning matrix for
the c-th sub-posterior")
}
index <- 2
cat('Starting progressive fusion \n', file = 'progressive_fusion_biGaussian.txt')
for (k in ((1/start_beta)-1):1) {
if (k==(1/start_beta)-1) {
cat('########################\n', file = 'progressive_fusion_biGaussian.txt',
append = T)
cat('Starting to fuse', 2, 'densities for level', k, 'which is using',
parallel::detectCores(), 'cores\n',
file = 'progressive_fusion_biGaussian.txt', append = T)
cat('Fusing samples for beta =', 1, '/', (1/start_beta), 'with time',
time_schedule[k], 'to get', N_schedule[k], 'samples for beta =', 2,
'/', (1/start_beta), '\n', file = 'progressive_fusion_biGaussian.txt',
append = T)
cat('########################\n', file = 'progressive_fusion_biGaussian.txt',
append = T)
samples_to_fuse <- list(base_samples[[1]], base_samples[[2]])
precondition_mats <- precondition_matrices[[k+1]][1:2]
fused <- parallel_fusion_biGaussian(N = N_schedule[k],
m = 2,
time = time_schedule[k],
samples_to_fuse = samples_to_fuse,
mean_vec = mean_vec,
sd_vec = sd_vec,
corr = corr,
betas = c(start_beta, start_beta),
precondition_matrices = precondition_mats,
seed = seed,
n_cores = n_cores)
} else {
cat('########################\n', file = 'progressive_fusion_biGaussian.txt',
append = T)
cat('Starting to fuse', 2, 'densities for level', k, 'which is using',
parallel::detectCores(), 'cores\n', file = 'progressive_fusion_biGaussian.txt',
append = T)
cat('Fusing samples for beta =', index, '/', (1/start_beta), 'and beta =',
1, '/', (1/start_beta), 'with time', time_schedule[k], 'to get',
N_schedule[k], 'samples for beta =', (index+1), '/', (1/start_beta),
'\n', file = 'progressive_fusion_biGaussian.txt', append = T)
cat('########################\n', file = 'progressive_fusion_biGaussian.txt',
append = T)
samples_to_fuse <- list(prog_samples[[k+1]],
base_samples[[index+1]])
precondition_mats <- list(precondition_matrices[[k+1]],
precondition_matrices[[(1/start_beta)]][[index+1]])
fused <- parallel_fusion_biGaussian(N = N_schedule[k],
m = 2,
time = time_schedule[k],
samples_to_fuse = samples_to_fuse,
mean_vec = mean_vec,
sd_vec = sd_vec,
corr = corr,
betas = c(index*start_beta, start_beta),
precondition_matrices = precondition_mats,
seed = seed,
n_cores = n_cores)
index <- index + 1
}
# need to combine the correct samples
prog_samples[[k]] <- fused$samples
precondition_matrices[[k]] <- fused$precondition_matrices[[1]]
rho[k] <- fused$rho
Q[k] <- fused$Q
rhoQ[k] <- fused$rhoQ
time[k] <- fused$time
}
cat('Completed progressive fusion\n', file = 'progressive_fusion_biGaussian.txt', append = T)
return(list('samples' = prog_samples,
'time' = time,
'rho_acc' = rho,
'Q_acc' = Q,
'rhoQ_acc' = rhoQ,
'diffusion_times' = time_schedule,
'precondition_matrices' = precondition_matrices))
}
#' Q Importance Sampling Step
#'
#' Q Importance Sampling weighting for bivariate Gaussian distributions
#'
#' @param particle_set particles set prior to Q importance sampling step
#' @param m number of sub-posteriors to combine
#' @param time time T for fusion algorithm
#' @param mean_vec vector of length 2 for mean
#' @param sd_vec vector of length 2 for standard deviation
#' @param corr correlation value between component 1 and component 2
#' @param betas vector of length c, where betas[c] is the inverse temperature
#' value for c-th posterior
#' @param precondition_matrices list of length m, where precondition_matrices[[c]]
#' is the precondition matrix for sub-posterior c
#' @param inv_precondition_matrices list of length m, where inv_precondition_matrices[[c]]
#' is the inverse precondition matrix for sub-posterior c
#' @param diffusion_estimator choice of unbiased estimator for the Exact Algorithm
#' between "Poisson" (default) for Poisson estimator
#' and "NB" for Negative Binomial estimator
#' @param beta_NB beta parameter for Negative Binomial estimator (default 10)
#' @param gamma_NB_n_points number of points used in the trapezoidal estimation
#' of the integral found in the mean of the negative
#' binomial estimator (default is 2)
#' @param seed seed number - default is NULL, meaning there is no seed
#' @param n_cores number of cores to use
#'
#' @return An updated particle set
#'
#' @export
Q_IS_biGaussian <- function(particle_set,
m,
time,
mean_vec,
sd_vec,
corr,
betas,
precondition_matrices,
inv_precondition_matrices,
diffusion_estimator = 'Poisson',
beta_NB = 10,
gamma_NB_n_points = 2,
seed = NULL,
n_cores = parallel::detectCores()) {
if (!("particle" %in% class(particle_set))) {
stop("Q_IS_biGaussian: particle_set must be a \"particle\" object")
} else if (!is.vector(mean_vec) | (length(mean_vec)!=2)) {
stop("Q_IS_biGaussian: mean_vec must be a vector of length 2")
} else if (!is.vector(sd_vec) | (length(sd_vec)!=2)) {
stop("Q_IS_biGaussian: sd_vec must be a vector of length 2")
} else if (!is.vector(betas) | (length(betas)!=m)) {
stop("Q_IS_biGaussian: betas must be a vector of length m")
} else if (!is.list(precondition_matrices) | (length(precondition_matrices)!=m)) {
stop("Q_IS_biGaussian: precondition_matrices must be a list of length m")
} else if (!is.list(inv_precondition_matrices) | (length(inv_precondition_matrices)!=m)) {
stop("Q_IS_biGaussian: inv_precondition_matrices must be a list of length m")
}
transform_matrices <- lapply(1:m, function(c) {
list('to_Z' = expm::sqrtm(inv_precondition_matrices[[c]]),
'to_X' = expm::sqrtm(precondition_matrices[[c]]))
})
proposal_cov <- calculate_proposal_cov(time = time, weights = inv_precondition_matrices)
N <- particle_set$N
# ---------- creating parallel cluster
cl <- parallel::makeCluster(n_cores)
parallel::clusterExport(cl, envir = environment(), varlist = ls())
parallel::clusterExport(cl, varlist = ls("package:DCFusion"))
parallel::clusterExport(cl, varlist = ls("package:layeredBB"))
if (!is.null(seed)) {
parallel::clusterSetRNGStream(cl, iseed = seed)
}
# split the x samples and their means into approximately equal lists
max_samples_per_core <- ceiling(N/n_cores)
split_indices <- split(1:N, ceiling(seq_along(1:N)/max_samples_per_core))
split_x_samples <- lapply(split_indices, function(indices) particle_set$x_samples[indices])
split_x_means <- lapply(split_indices, function(indices) particle_set$x_means[indices,,drop = FALSE])
# for each set of x samples, we propose a new value y and assign a weight for it
# sample for y and importance weight in parallel to split computation
Q_weighted_samples <- parallel::parLapply(cl, X = 1:length(split_indices), fun = function(core) {
split_N <- length(split_indices[[core]])
y_samples <- matrix(nrow = split_N, ncol = 2)
log_Q_weights <- rep(0, split_N)
for (i in 1:split_N) {
y_samples[i,] <- mvrnormArma(N = 1, mu = split_x_means[[core]][i,], Sigma = proposal_cov)
log_Q_weights[i] <- sum(sapply(1:m, function(c) {
ea_biGaussian_DL_PT(x0 = as.vector(split_x_samples[[core]][[i]][c,]),
y = as.vector(y_samples[i,]),
s = 0,
t = time,
mean_vec = mean_vec,
sd_vec = sd_vec,
corr = corr,
beta = betas[c],
precondition_mat = precondition_matrices[[c]],
transform_mats = transform_matrices[[c]],
diffusion_estimator = diffusion_estimator,
beta_NB = beta_NB,
gamma_NB_n_points = gamma_NB_n_points,
logarithm = TRUE)
}))
}
return(list('y_samples' = y_samples, 'log_Q_weights' = log_Q_weights))
})
parallel::stopCluster(cl)
# unlist the proposed samples for y and their associated log Q weights
y_samples <- do.call(rbind, lapply(1:length(split_x_samples), function(i) {
Q_weighted_samples[[i]]$y_samples}))
log_Q_weights <- unlist(lapply(1:length(split_x_samples), function(i) {
Q_weighted_samples[[i]]$log_Q_weights}))
# ---------- update particle set
# update the weights and return updated particle set
particle_set$y_samples <- y_samples
# normalise weight
norm_weights <- particle_ESS(log_weights = particle_set$log_weights + log_Q_weights)
particle_set$log_weights <- norm_weights$log_weights
particle_set$normalised_weights <- norm_weights$normalised_weights
particle_set$ESS <- norm_weights$ESS
# calculate the conditional ESS (i.e. the 1/sum(inc_change^2))
# where inc_change is the incremental change in weight (= log_Q_weights)
particle_set$CESS[2] <- particle_ESS(log_weights = log_Q_weights)$ESS
# set the resampled indicator to FALSE
particle_set$resampled[2] <- FALSE
return(particle_set)
}
#' Generalised Monte Carlo Fusion [parallel]
#'
#' Generalised Monte Carlo Fusion with bivariate Gaussian target
#'
#' @param particles_to_fuse list of length m, where particles_to_fuse[[c]]
#' contains the particles for the c-th sub-posterior
#' (a list of particles to fuse can be initialised by
#' initialise_particle_sets() function)
#' @param N number of samples
#' @param m number of sub-posteriors to combine
#' @param time time T for fusion algorithm
#' @param precondition_matrices list of length m, where precondition_matrices[[c]]
#' is the precondition matrix for sub-posterior c
#' @param mean_vec vector of length 2 for mean
#' @param sd_vec vector of length 2 for standard deviation
#' @param corr correlation value between component 1 and component 2
#' @param betas vector of length c, where betas[c] is the inverse temperature
#' value for c-th posterior
#' @param resampling_method method to be used in resampling, default is multinomial
#' resampling ('multi'). Other choices are stratified
#' resampling ('strat'), systematic resampling ('system'),
#' residual resampling ('resid')
#' @param ESS_threshold number between 0 and 1 defining the proportion
#' of the number of samples that ESS needs to be
#' lower than for resampling (i.e. resampling is carried
#' out only when ESS < N*ESS_threshold)
#' @param diffusion_estimator choice of unbiased estimator for the Exact Algorithm
#' between "Poisson" (default) for Poisson estimator
#' and "NB" for Negative Binomial estimator
#' @param beta_NB beta parameter for Negative Binomial estimator (default 10)
#' @param gamma_NB_n_points number of points used in the trapezoidal estimation
#' of the integral found in the mean of the negative
#' binomial estimator (default is 2)
#' @param seed seed number - default is NULL, meaning there is no seed
#' @param n_cores number of cores to use
#'
#' @return A list with components:
#' \describe{
#' \item{particles}{particles returned from fusion sampler}
#' \item{proposed_samples}{proposal samples from fusion sampler}
#' \item{time}{run-time of fusion sampler}
#' \item{ESS}{effective sample size of the particles after each step}
#' \item{CESS}{conditional effective sample size of the particles after each step}
#' \item{resampled}{boolean value to indicate if particles were resampled
#' after each time step}
#' \item{precondition_matrices}{list of length 2 where precondition_matrices[[2]]
#' are the pre-conditioning matrices that were used
#' and precondition_matrices[[1]] are the combined
#' precondition matrices}
#' }
#'
#' @export
parallel_fusion_SMC_biGaussian <- function(particles_to_fuse,
N,
m,
time,
mean_vec,
sd_vec,
corr,
betas,
precondition_matrices,
resampling_method = 'multi',
ESS_threshold = 0.5,
diffusion_estimator = 'Poisson',
beta_NB = 10,
gamma_NB_n_points = 2,
seed = NULL,
n_cores = parallel::detectCores()) {
if (!is.list(particles_to_fuse) | (length(particles_to_fuse)!=m)) {
stop("parallel_fusion_SMC_biGaussian: particles_to_fuse must be a list of length m")
} else if (!all(sapply(particles_to_fuse, function(sub_posterior) ("particle" %in% class(sub_posterior))))) {
stop("parallel_fusion_SMC_biGaussian: particles in particles_to_fuse must be \"particle\" objects")
} else if (!all(sapply(particles_to_fuse, function(sub_posterior) is.matrix(sub_posterior$y_samples)))) {
stop("parallel_fusion_SMC_biGaussian: the particles' samples for y should all be matrices")
} else if (!all(sapply(particles_to_fuse, function(sub_posterior) ncol(sub_posterior$y_samples)==2))) {
stop("parallel_fusion_SMC_biGaussian: the particles' samples for y should all be matrices with 2 columns")
} else if (!is.vector(mean_vec) | (length(mean_vec)!=2)) {
stop("parallel_fusion_SMC_biGaussian: mean_vec must be a vector of length 2")
} else if (!is.vector(sd_vec) | (length(sd_vec)!=2)) {
stop("parallel_fusion_SMC_biGaussian: sd_vec must be a vector of length 2")
} else if (!is.vector(betas) | (length(betas)!=m)) {
stop("parallel_fusion_SMC_biGaussian: betas must be a vector of length m")
} else if (!is.list(precondition_matrices) | (length(precondition_matrices)!=m)) {
stop("parallel_fusion_SMC_biGaussian: precondition_matrices must be a list of length m")
} else if ((ESS_threshold < 0) | (ESS_threshold > 1)) {
stop("parallel_fusion_SMC_biGaussian: ESS_threshold must be between 0 and 1")
}
# set a seed if one is supplied
if (!is.null(seed)) {
set.seed(seed)
}
# start time recording
pcm <- proc.time()
# ---------- first importance sampling step
# pre-calculating the inverse precondition matrices
inv_precondition_matrices <- lapply(precondition_matrices, solve)
# importance sampling for rho step
particles <- rho_IS_multivariate(particles_to_fuse = particles_to_fuse,
dim = 2,
N = N,
m = m,
time = time,
inv_precondition_matrices = inv_precondition_matrices,
inverse_sum_inv_precondition_matrices = inverse_sum_matrices(inv_precondition_matrices),
number_of_steps = 2,
resampling_method = resampling_method,
seed = seed,
n_cores = n_cores)
# record ESS and CESS after rho step
ESS <- c('rho' = particles$ESS)
CESS <- c('rho' = particles$CESS[1])
# ----------- resample particles (only resample if ESS < N*ESS_threshold)
if (particles$ESS < N*ESS_threshold) {
resampled <- c('rho' = TRUE)
particles <- resample_particle_x_samples(N = N,
particle_set = particles,
multivariate = TRUE,
step = 1,
resampling_method = resampling_method,
seed = seed)
} else {
resampled <- c('rho' = FALSE)
}
# ---------- second importance sampling step
# unbiased estimator for Q
particles <- Q_IS_biGaussian(particle_set = particles,
m = m,
time = time,
mean_vec = mean_vec,
sd_vec = sd_vec,
corr = corr,
betas = betas,
precondition_matrices = precondition_matrices,
inv_precondition_matrices = inv_precondition_matrices,
diffusion_estimator = diffusion_estimator,
beta_NB = beta_NB,
gamma_NB_n_points = gamma_NB_n_points,
seed = seed,
n_cores = n_cores)
# record ESS and CESS after Q step
ESS['Q'] <- particles$ESS
CESS['Q'] <- particles$CESS[2]
names(CESS) <- c('rho', 'Q')
# record proposed samples
proposed_samples <- particles$y_samples
# ----------- resample particles (only resample if ESS < N*ESS_threshold)
if (particles$ESS < N*ESS_threshold) {
resampled['Q'] <- TRUE
particles <- resample_particle_y_samples(N = N,
particle_set = particles,
multivariate = TRUE,
resampling_method = resampling_method,
seed = seed)
} else {
resampled['Q'] <- FALSE
}
if (identical(precondition_matrices, rep(list(diag(1, 2)), m))) {
new_precondition_matrices <- list(diag(1, 2), precondition_matrices)
} else {
new_precondition_matrices <- list(inverse_sum_matrices(inv_precondition_matrices),
precondition_matrices)
}
return(list('particles' = particles,
'proposed_samples' = proposed_samples,
'time' = (proc.time()-pcm)['elapsed'],
'ESS' = ESS,
'CESS' = CESS,
'resampled' = resampled,
'precondition_matrices' = new_precondition_matrices))
}
#' (Balanced Binary) D&C Monte Carlo Fusion using SMC
#'
#' (Balanced Binary) D&C Monte Carlo Fusion with bivariate Gaussian target
#'
#' @param N_schedule vector of length (L-1), where N_schedule[l] is the number
#' of samples per node at level l
#' @param m_schedule vector of length (L-1), where m_schedule[l] is the number
#' of samples to fuse for level l
#' @param time_schedule vector of length(L-1), where time_schedule[l] is the time
#' chosen for Fusion at level l
#' @param base_samples list of length (1/start_beta), where base_samples[[c]]
#' contains the samples for the c-th node in the level
#' @param L total number of levels in the hierarchy
#' @param mean_vec vector of length 2 for mean
#' @param sd_vec vector of length 2 for standard deviation
#' @param corr correlation value between component 1 and component 2
#' @param start_beta beta for the base level
#' @param precondition either a logical value to determine if preconditioning matrices are
#' used (TRUE - and is set to be the variance of the sub-posterior samples)
#' or not (FALSE - and is set to be the identity matrix for all sub-posteriors),
#' or a list of length (1/start_beta) where precondition[[c]]
#' is the preconditioning matrix for sub-posterior c. Default is TRUE
#' @param resampling_method method to be used in resampling, default is multinomial
#' resampling ('multi'). Other choices are stratified
#' resampling ('strat'), systematic resampling ('system'),
#' residual resampling ('resid')
#' @param ESS_threshold number between 0 and 1 defining the proportion
#' of the number of samples that ESS needs to be
#' lower than for resampling (i.e. resampling is carried
#' out only when ESS < N*ESS_threshold)
#' @param diffusion_estimator choice of unbiased estimator for the Exact Algorithm
#' between "Poisson" (default) for Poisson estimator
#' and "NB" for Negative Binomial estimator
#' @param beta_NB beta parameter for Negative Binomial estimator (default 10)
#' @param gamma_NB_n_points number of points used in the trapezoidal estimation
#' of the integral found in the mean of the negative
#' binomial estimator (default is 2)
#' @param seed seed number - default is NULL, meaning there is no seed
#' @param n_cores number of cores to use
#'
#' @return A list with components:
#' \describe{
#' \item{particles}{list of length (L-1), where particles[[l]][[i]] are the
#' particles for level l, node i}
#' \item{proposed_samples}{list of length (L-1), where proposed_samples[[l]][[i]]
#' are the proposed samples for level l, node i}
#' \item{time}{list of length (L-1), where time[[l]][[i]] is the run time for level l,
#' node i}
#' \item{ESS}{list of length (L-1), where ESS[[l]][[i]] is the effective
#' sample size of the particles after each step BEFORE deciding
#' whether or not to resample for level l, node i}
#' \item{CESS}{list of length (L-1), where CESS[[l]][[i]] is the conditional
#' effective sample size of the particles after each step}
#' \item{resampled}{list of length (L-1), where resampled[[l]][[i]] is a
#' boolean value to record if the particles were resampled
#' after each step; rho and Q for level l, node i}
#' \item{precondition_matrices}{preconditioning matrices used in the algorithm
#' for each node}
#' \item{diffusion_times}{vector of length (L-1), where diffusion_times[l]
#' are the times for fusion in level l}
#' }
#'
#' @export
bal_binary_fusion_SMC_biGaussian <- function(N_schedule,
m_schedule,
time_schedule,
base_samples,
L,
mean_vec,
sd_vec,
corr,
start_beta,
precondition = TRUE,
resampling_method = 'multi',
ESS_threshold = 0.5,
diffusion_estimator = 'Poisson',
beta_NB = 10,
gamma_NB_n_points = 2,
seed = NULL,
n_cores = parallel::detectCores()) {
if (!is.vector(N_schedule) | (length(N_schedule)!=(L-1))) {
stop("bal_binary_fusion_SMC_biGaussian: N_schedule must be a vector of length (L-1)")
} else if (!is.vector(m_schedule) | (length(m_schedule)!=(L-1))) {
stop("bal_binary_fusion_SMC_biGaussian: m_schedule must be a vector of length (L-1)")
} else if (!is.vector(time_schedule) | (length(time_schedule)!=(L-1))) {
stop("bal_binary_fusion_SMC_biGaussian: time_schedule must be a vector of length (L-1)")
} else if (!is.list(base_samples) | (length(base_samples)!=(1/start_beta))) {
stop("bal_binary_fusion_SMC_biGaussian: base_samples must be a list of length (1/start_beta)")
} else if (!is.vector(mean_vec) | (length(mean_vec)!=2)) {
stop("bal_binary_fusion_SMC_biGaussian: mean_vec must be a vector of length 2")
} else if (!is.vector(sd_vec) | (length(sd_vec)!=2)) {
stop("bal_binary_fusion_SMC_biGaussian: sd_vec must be a vector of length 2")
} else if (ESS_threshold < 0 | ESS_threshold > 1) {
stop("bal_binary_fusion_SMC_biGaussian: ESS_threshold must be between 0 and 1")
}
if (is.vector(m_schedule) & (length(m_schedule)==(L-1))) {
for (l in (L-1):1) {
if (((1/start_beta)/prod(m_schedule[(L-1):l]))%%1!=0) {
stop("bal_binary_fusion_SMC_biGaussian: check that (1/start_beta)/prod(m_schedule[(L-1):l])
is an integer for l=L-1,...,1")
}
}
} else {
stop("bal_binary_fusion_SMC_biGaussian: m_schedule must be a vector of length (L-1)")
}
m_schedule <- c(m_schedule, 1)
particles <- list()
if (all(sapply(base_samples, function(sub) class(sub)=='particle'))) {
particles[[L]] <- base_samples
} else if (all(sapply(base_samples, is.matrix))) {
if (!all(sapply(base_samples, function(core) ncol(core)==2))) {
stop("bal_binary_fusion_SMC_biGaussian: the sub-posterior samples in base_samples must be matrices with 2 columns")
}
particles[[L]] <- initialise_particle_sets(samples_to_fuse = base_samples,
multivariate = TRUE,
number_of_steps = 2)
} else {
stop("bal_binary_fusion_SMC_biGaussian: base_samples must be a list of length
(1/start_beta) containing either items of class \"particle\" (representing
particle approximations of the sub-posteriors) or are matrices with 2 columns
(representing un-normalised sample approximations of the sub-posteriors)")
}
proposed_samples <- list()
time <- list()
ESS <- list()
CESS <- list()
resampled <- list()
precondition_matrices <- list()
if (is.logical(precondition)) {
if (precondition) {
precondition_matrices[[L]] <- lapply(base_samples, cov)
} else {
precondition_matrices[[L]] <- rep(list(diag(1, 2)), (1/start_beta))
}
} else if (is.list(precondition)) {
if (length(precondition)==(1/start_beta) & all(sapply(precondition, is.matrix))) {
if (all(sapply(precondition, function(sub) ncol(sub)==2))) {
precondition_matrices[[L]] <- precondition
}
}
} else {
stop("bal_binary_fusion_SMC_biGaussian: precondition must be a logical indicating
whether or not a preconditioning matrix should be used, or a list of
length C, where precondition[[c]] is the preconditioning matrix for
the c-th sub-posterior")
}
cat('Starting bal_binary fusion \n', file = 'bal_binary_fusion_SMC_biGaussian.txt')
for (k in ((L-1):1)) {
n_nodes <- max((1/start_beta)/prod(m_schedule[L:k]), 1)
cat('########################\n', file = 'bal_binary_fusion_SMC_biGaussian.txt',
append = T)
cat('Starting to fuse', m_schedule[k], 'densities of pi^beta, where beta =',
prod(m_schedule[L:(k+1)]), '/', (1/start_beta), 'for level', k, 'with time',
time_schedule[k], ', which is using', parallel::detectCores(), 'cores\n',
file = 'bal_binary_fusion_SMC_biGaussian.txt', append = T)
cat('There are', n_nodes, 'nodes at this level each giving', N_schedule[k],
'samples for beta =', prod(m_schedule[L:k]), '/', (1/start_beta),
'\n', file = 'bal_binary_fusion_SMC_biGaussian.txt', append = T)
cat('########################\n', file = 'bal_binary_fusion_SMC_biGaussian.txt',
append = T)
fused <- lapply(X = 1:n_nodes, FUN = function(i) {
previous_nodes <- ((m_schedule[k]*i)-(m_schedule[k]-1)):(m_schedule[k]*i)
particles_to_fuse <- particles[[k+1]][previous_nodes]
precondition_mats <- precondition_matrices[[k+1]][previous_nodes]
parallel_fusion_SMC_biGaussian(particles_to_fuse = particles_to_fuse,
m = m_schedule[k],
time = time_schedule[k],
N = N_schedule[k],
mean_vec = mean_vec,
sd_vec = sd_vec,
corr = corr,
betas = rep(prod(m_schedule[L:(k+1)])*(start_beta), m_schedule[k]),
precondition_matrices = precondition_mats,
resampling_method = resampling_method,
ESS_threshold = ESS_threshold,
diffusion_estimator = diffusion_estimator,
beta_NB = beta_NB,
gamma_NB_n_points = gamma_NB_n_points,
seed = seed,
n_cores = n_cores)
})
# need to combine the correct samples
particles[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$particles)
proposed_samples[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$proposed_samples)
time[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$time)
ESS[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$ESS)
CESS[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$CESS)
resampled[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$resampled)
precondition_matrices[[k]] <- lapply(1:n_nodes, function(i) fused[[i]]$precondition_matrices[[1]])
}
cat('Completed bal_binary fusion\n', file = 'bal_binary_fusion_SMC_biGaussian.txt', append = T)
if (length(particles[[1]])==1) {
particles[[1]] <- particles[[1]][[1]]
proposed_samples[[1]] <- proposed_samples[[1]][[1]]
time[[1]] <- time[[1]][[1]]
ESS[[1]] <- ESS[[1]][[1]]
CESS[[1]] <- CESS[[1]][[1]]
resampled[[1]] <- resampled[[1]][[1]]
precondition_matrices[[1]] <- precondition_matrices[[1]][[1]]
}
return(list('particles' = particles,
'proposed_samples' = proposed_samples,
'time' = time,
'ESS' = ESS,
'CESS' = CESS,
'resampled' = resampled,
'precondition_matrices' = precondition_matrices,
'diffusion_times' = time_schedule))
}
#' (Progressive) D&C Monte Carlo Fusion using SMC
#'
#' (Progressive) D&C Monte Carlo Fusion with bivariate Gaussian target
#'
#' @param N_schedule vector of length (L-1), where N_schedule[l] is the number
#' of samples per node at level l
#' @param time_schedule vector of length(L-1), where time_schedule[l] is the time
#' chosen for Fusion at level l
#' @param base_samples list of length (1/start_beta), where base_samples[[c]]
#' contains the samples for the c-th node in the level
#' @param mean_vec vector of length 2 for mean
#' @param sd_vec vector of length 2 for standard deviation
#' @param corr correlation value between component 1 and component 2
#' @param start_beta beta for the base level
#' @param precondition either a logical value to determine if preconditioning matrices are
#' used (TRUE - and is set to be the variance of the sub-posterior samples)
#' or not (FALSE - and is set to be the identity matrix for all sub-posteriors),
#' or a list of length (1/start_beta) where precondition[[c]]
#' is the preconditioning matrix for sub-posterior c. Default is TRUE
#' @param resampling_method method to be used in resampling, default is multinomial
#' resampling ('multi'). Other choices are stratified
#' resampling ('strat'), systematic resampling ('system'),
#' residual resampling ('resid')
#' @param ESS_threshold number between 0 and 1 defining the proportion
#' of the number of samples that ESS needs to be
#' lower than for resampling (i.e. resampling is carried
#' out only when ESS < N*ESS_threshold)
#' @param diffusion_estimator choice of unbiased estimator for the Exact Algorithm
#' between "Poisson" (default) for Poisson estimator
#' and "NB" for Negative Binomial estimator
#' @param beta_NB beta parameter for Negative Binomial estimator (default 10)
#' @param gamma_NB_n_points number of points used in the trapezoidal estimation
#' of the integral found in the mean of the negative
#' binomial estimator (default is 2)
#' @param seed seed number - default is NULL, meaning there is no seed
#' @param n_cores number of cores to use
#'
#' @return A list with components:
#' \describe{
#' \item{particles}{list of length (L-1), where particles[[l]][[i]] are the
#' particles for level l, node i}
#' \item{proposed_samples}{list of length (L-1), where proposed_samples[[l]][[i]]
#' are the proposed samples for level l, node i}
#' \item{time}{list of length (L-1), where time[[l]][[i]] is the run time for level l,
#' node i}
#' \item{ESS}{list of length (L-1), where ESS[[l]][[i]] is the effective
#' sample size of the particles after each step BEFORE deciding
#' whether or not to resample for level l, node i}
#' \item{CESS}{list of length (L-1), where CESS[[l]][[i]] is the conditional
#' effective sample size of the particles after each step}
#' \item{resampled}{list of length (L-1), where resampled[[l]][[i]] is a
#' boolean value to record if the particles were resampled
#' after each step; rho and Q for level l, node i}
#' \item{precondition_matrices}{preconditioning matrices used in the algorithm
#' for each node}
#' \item{diffusion_times}{vector of length (L-1), where diffusion_times[l]
#' are the times for fusion in level l}
#' }
#'
#' @export
progressive_fusion_SMC_biGaussian <- function(N_schedule,
time_schedule,
base_samples,
mean_vec,
sd_vec,
corr,
sd,
start_beta,
precondition = TRUE,
resampling_method = 'multi',
ESS_threshold = 0.5,
diffusion_estimator = 'Poisson',
beta_NB = 10,
gamma_NB_n_points = 2,
seed = NULL,
n_cores = parallel::detectCores()) {
if (!is.vector(N_schedule) | (length(N_schedule)!=(1/start_beta)-1)) {
stop("progressive_fusion_SMC_biGaussian: N_schedule must be a vector of length ((1/start_beta)-1)")
} else if (!is.vector(time_schedule) | (length(time_schedule)!=(1/start_beta)-1)) {
stop("progressive_fusion_SMC_biGaussian: time_schedule must be a vector of length ((1/start_beta)-1)")
} else if (!is.list(base_samples) | (length(base_samples)!=(1/start_beta))) {
stop("progressive_fusion_SMC_biGaussian: base_samples must be a list of length (1/start_beta)")
} else if (!is.vector(mean_vec) | (length(mean_vec)!=2)) {
stop("progressive_fusion_SMC_biGaussian: mean_vec must be a vector of length 2")
} else if (!is.vector(sd_vec) | (length(sd_vec)!=2)) {
stop("progressive_fusion_SMC_biGaussian: sd_vec must be a vector of length 2")
} else if (ESS_threshold < 0 | ESS_threshold > 1) {
stop("progressive_fusion_SMC_biGaussian: ESS_threshold must be between 0 and 1")
}
particles <- list()
if (all(sapply(base_samples, function(sub) class(sub)=='particle'))) {
particles[[(1/start_beta)]] <- base_samples
} else if (all(sapply(base_samples, is.matrix))) {
if (!all(sapply(base_samples, function(core) ncol(core)==2))) {
stop("progressive_fusion_SMC_biGaussian: the sub-posterior samples in base_samples must be matrices with 2 columns")
}
particles[[(1/start_beta)]] <- initialise_particle_sets(samples_to_fuse = base_samples,
multivariate = TRUE,
number_of_steps = 2)
} else {
stop("progressive_fusion_SMC_biGaussian: base_samples must be a list of length
(1/start_beta) containing either items of class \"particle\" (representing
particle approximations of the sub-posteriors) zor are matrices (representing
un-normalised sample approximations of the sub-posteriors)")
}
proposed_samples <- list()
time <- list()
ESS <- list()
CESS <- list()
resampled <- list()
precondition_matrices <- list()
if (is.logical(precondition)) {
if (precondition) {
precondition_matrices[[(1/start_beta)]] <- lapply(base_samples, cov)
} else {
precondition_matrices[[(1/start_beta)]] <- rep(list(diag(1, 2)), (1/start_beta))
}
} else if (is.list(precondition)) {
if (length(precondition)==(1/start_beta) & all(sapply(precondition, is.matrix))) {
if (all(sapply(precondition, function(sub) ncol(sub)==2))) {
precondition_matrices[[(1/start_beta)]] <- precondition
}
}
} else {
stop("progressive_fusion_SMC_biGaussian: precondition must be a logical indicating
whether or not a preconditioning matrix should be used, or a list of
length C, where precondition[[c]] is the preconditioning matrix for
the c-th sub-posterior")
}
index <- 2
cat('Starting progressive fusion \n', file = 'progressive_fusion_SMC_biGaussian.txt')
for (k in ((1/start_beta)-1):1) {
if (k==(1/start_beta)-1) {
cat('########################\n', file = 'progressive_fusion_SMC_biGaussian.txt',
append = T)
cat('Starting to fuse', 2, 'densities for level', k, 'which is using',
parallel::detectCores(), 'cores\n',
file = 'progressive_fusion_SMC_biGaussian.txt', append = T)
cat('Fusing samples for beta =', 1, '/', (1/start_beta), 'with time',
time_schedule[k], 'to get', N_schedule[k], 'samples for beta =', 2,
'/', (1/start_beta), '\n', file = 'progressive_fusion_SMC_biGaussian.txt',
append = T)
cat('########################\n', file = 'progressive_fusion_SMC_biGaussian.txt',
append = T)
particles_to_fuse <- list(particles[[(1/start_beta)]][[1]],
particles[[(1/start_beta)]][[2]])
precondition_mats <- precondition_matrices[[k+1]][1:2]
fused <- parallel_fusion_SMC_biGaussian(particles_to_fuse = particles_to_fuse,
N = N_schedule[k],
m = 2,
time = time_schedule[k],
mean_vec = mean_vec,
sd_vec = sd_vec,
corr = corr,
betas = c(start_beta, start_beta),
precondition_matrices = precondition_mats,
resampling_method = resampling_method,
ESS_threshold = ESS_threshold,
diffusion_estimator = diffusion_estimator,
beta_NB = beta_NB,
gamma_NB_n_points = gamma_NB_n_points,
seed = seed,
n_cores = n_cores)
} else {
cat('########################\n', file = 'progressive_fusion_SMC_biGaussian.txt',
append = T)
cat('Starting to fuse', 2, 'densities for level', k, 'which is using',
parallel::detectCores(), 'cores\n',
file = 'progressive_fusion_SMC_biGaussian.txt', append = T)
cat('Fusing samples for beta =', index, '/', (1/start_beta), 'and beta =',
1, '/', (1/start_beta), 'with time', time_schedule[k], 'to get',
N_schedule[k], 'samples for beta =', (index+1), '/', (1/start_beta),
'\n', file = 'progressive_fusion_SMC_biGaussian.txt', append = T)
cat('########################\n', file = 'progressive_fusion_SMC_biGaussian.txt',
append = T)
particles_to_fuse <- list(particles[[k+1]],
particles[[(1/start_beta)]][[index+1]])
precondition_mats <- list(precondition_matrices[[k+1]],
precondition_matrices[[(1/start_beta)]][[index+1]])
fused <- parallel_fusion_SMC_biGaussian(particles_to_fuse = particles_to_fuse,
N = N_schedule[k],
m = 2,
time = time_schedule[k],
mean_vec = mean_vec,
sd_vec = sd_vec,
corr = corr,
betas = c(index*start_beta, start_beta),
precondition_matrices = precondition_mats,
resampling_method = resampling_method,
ESS_threshold = ESS_threshold,
diffusion_estimator = diffusion_estimator,
beta_NB = beta_NB,
gamma_NB_n_points = gamma_NB_n_points,
seed = seed,
n_cores = n_cores)
index <- index + 1
}
# need to combine the correct samples
particles[[k]] <- fused$particles
proposed_samples[[k]] <-fused$proposed_samples
time[[k]] <- fused$time
ESS[[k]] <- fused$ESS
CESS[[k]] <- fused$CESS
resampled[[k]] <- fused$resampled
precondition_matrices[[k]] <- fused$precondition_matrices[[1]]
}
cat('Completed progressive fusion\n', file = 'progressive_fusion_SMC_biGaussian.txt', append = T)
return(list('particles' = particles,
'proposed_samples' = proposed_samples,
'time' = time,
'ESS' = ESS,
'CESS' = CESS,
'resampled' = resampled,
'precondition_matrices' = precondition_matrices,
'diffusion_times' = time_schedule))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.