ea_exp_4_DL_PT | R Documentation |
Evaluate probability of Langevin diffusion using the Exact Algorithm with pi = exp(-(beta*(x-mean)^4)/2) using Poisson thinning
ea_exp_4_DL_PT( x0, y, s, t, mean, beta, precondition, diffusion_estimator = "Poisson", beta_NB = 10, gamma_NB_n_points = 2, logarithm )
x0 |
start value |
y |
end value |
s |
start time |
t |
end time |
mean |
mean value |
beta |
real value |
precondition |
precondition value (i.e the covariance for the Langevin diffusion) |
diffusion_estimator |
choice of unbiased estimator for the Exact Algorithm between "Poisson" (default) for Poisson estimator and "NB" for Negative Binomial estimator |
beta_NB |
beta parameter for Negative Binomial estimator (default 10) |
gamma_NB_n_points |
number of points used in the trapezoidal estimation of the integral found in the mean of the negative binomial estimator (default is 2) |
logarithm |
logical value to determine if log probability is returned (TRUE) or not (FALSE) |
K |
lower bound of the phi function |
acceptance probability of simulating Langevin diffusion with pi = exp(-(beta*(x-mean)^4)/2)
mu <- 0.435 beta <- 0.583 precondition <- 1.243 # Poisson estimator ea_exp_4_DL_PT(x0 = 0, y = 0.23, s = 0, t = 1, mean = mu, beta = beta, precondition = precondition, logarithm = TRUE) # NB estimator ea_exp_4_DL_PT(x0 = 0, y = 0.23, s = 0, t = 1, mean = mu, beta = beta, precondition = precondition, diffusion_estimator = 'NB', logarithm = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.