plot_auto_lm <- function (mdl, which_dbl = 1:6, ncol_1L_int = 3L, label_size_1L_int = 3)
{
#pacman::p_load(char = "ggfortify")
plt <- ggplot2::autoplot(mdl, which = which_dbl, ncol = ncol_1L_int,
label.size = label_size_1L_int)
if (6 %in% which_dbl)
plt[which(which_dbl == 6)] <- plt[which(which_dbl ==
6)] + ggtitle("Cook's vs Leverage")
plt
}
plot_lnr_cmprsn <- function (data_tb,
predn_ds_tb,
predr_var_nm_1L_chr,
predr_var_desc_1L_chr,
depnt_var_nm_1L_chr = "utl_total_w",
depnt_var_desc_1L_chr = "Total weighted utility score" # Remove default
)
{
data_tb <- data_tb %>% dplyr::filter(!is.na(!!rlang::sym(predr_var_nm_1L_chr)))
ggplot2::ggplot(data_tb, ggplot2::aes(x = !!rlang::sym(predr_var_nm_1L_chr),
y = !!rlang::sym(depnt_var_nm_1L_chr))) + ggplot2::geom_point() +
ggplot2::geom_smooth(method = "loess", size = 1.5) +
ggplot2::geom_line(data = predn_ds_tb, ggplot2::aes(x = !!rlang::sym(predr_var_nm_1L_chr),
y = !!rlang::sym(depnt_var_nm_1L_chr)), col = "red") +
ggplot2::theme_bw() + ggplot2::labs(x = predr_var_desc_1L_chr,
y = depnt_var_desc_1L_chr)
}
plot_obsd_predd_dnst <- function (tfd_data_tb,
depnt_var_nm_1L_chr = "utl_total_w", # Remove default
depnt_var_desc_1L_chr = "Total weighted utility score",# Remove default
predd_val_var_nm_1L_chr = "Predicted", base_size_1L_dbl = 11, cmprsn_predd_var_nm_1L_chr = NA_character_, new_var_nm_1L_chr = NA_character_,x_lbl_1L_chr = NA_character_)
{
if(is.na(cmprsn_predd_var_nm_1L_chr))
cmprsn_predd_var_nm_1L_chr <- NULL
if(is.na(x_lbl_1L_chr))
x_lbl_1L_chr <- depnt_var_desc_1L_chr
if(!is.na(new_var_nm_1L_chr)){
tfd_data_tb <- tfd_data_tb %>%
dplyr::rename(!!rlang::sym(new_var_nm_1L_chr) := !!rlang::sym(predd_val_var_nm_1L_chr))
predd_val_var_nm_1L_chr <- new_var_nm_1L_chr
}
args_ls <- list(predd_val_var_nm_1L_chr,
cmprsn_predd_var_nm_1L_chr)
tfd_data_tb %>%
dplyr::mutate(Observed = !!rlang::sym(depnt_var_nm_1L_chr)) %>%
tidyr::gather(variable, value,
!!!args_ls,
#!!rlang::sym(predd_val_var_nm_1L_chr),!!rlang::sym(cmprsn_predd_var_nm_1L_chr),
Observed) %>% ggplot2::ggplot(ggplot2::aes(x = value,
fill = variable)) + ggalt::geom_bkde(alpha = 0.5) + ggplot2::geom_rug() +
viridis::scale_fill_viridis(discrete = TRUE) + ggplot2::theme_bw(base_size = base_size_1L_dbl) +
ggplot2::theme(legend.position = "bottom") + ggplot2::labs(x = x_lbl_1L_chr,
y = "Density", fill = "")
}
plot_obsd_predd_sctr_cmprsn <- function (tfd_data_tb, depnt_var_nm_1L_chr = "utl_total_w",# Remove defaults
depnt_var_desc_1L_chr = "Total weighted utility score", # Remove defaults
round_var_nm_1L_chr = "round",
args_ls = NULL, base_size_1L_dbl = 11, correspondences_lup = NULL, predd_val_var_nm_1L_chr = "Predicted", x_lbl_1L_chr = NA_character_, y_lbl_1L_chr = NA_character_)
{
if(is.na(x_lbl_1L_chr))
x_lbl_1L_chr <- paste0("Observed ", depnt_var_desc_1L_chr)
if(is.na(y_lbl_1L_chr))
y_lbl_1L_chr <- paste0(predd_val_var_nm_1L_chr, " ", depnt_var_desc_1L_chr)
if(!is.null(correspondences_lup) && !identical(round_var_nm_1L_chr, character(0)) && ifelse(identical(round_var_nm_1L_chr, character(0)),T,!is.na(round_var_nm_1L_chr)))
tfd_data_tb <- tfd_data_tb %>%
dplyr::mutate(!!rlang::sym(round_var_nm_1L_chr) := !!rlang::sym(round_var_nm_1L_chr) %>%
purrr::map_chr(~ready4::get_from_lup_obj(correspondences_lup,
match_value_xx = .x,
match_var_nm_1L_chr = "old_nms_chr",
target_var_nm_1L_chr = "new_nms_chr")))
if(!identical(round_var_nm_1L_chr, character(0)) && ifelse(identical(round_var_nm_1L_chr, character(0)),T,!is.na(round_var_nm_1L_chr))){
mapping_aes <- ggplot2::aes(x = !!rlang::sym(depnt_var_nm_1L_chr), y = !!rlang::sym(predd_val_var_nm_1L_chr),
col = !!rlang::sym(round_var_nm_1L_chr))
}else{
mapping_aes <- ggplot2::aes(x = !!rlang::sym(depnt_var_nm_1L_chr), y = !!rlang::sym(predd_val_var_nm_1L_chr))
}
ggplot2::ggplot(tfd_data_tb) +
rlang::exec(ggplot2::geom_point,
mapping_aes,
size = 1,
!!!args_ls) +
ggplot2::theme_bw(base_size = base_size_1L_dbl) +
ggplot2::xlim(0,1) +
ggplot2::ylim(0, 1) +
ggplot2::scale_color_manual(values = c("#D55E00", "#56B4E9")) +
ggplot2::labs(x = x_lbl_1L_chr,
y = y_lbl_1L_chr,
col = "") +
ggplot2::theme(legend.position = "bottom")
}
plot_sctr_plt_cmprsn <- function (tfd_data_tb,
depnt_var_nm_1L_chr = "utl_total_w", # Remove defaults
predd_val_var_nm_1L_chr = "Predicted")
{
tfd_data_tb %>% ggplot2::ggplot(ggplot2::aes(x = !!rlang::sym(depnt_var_nm_1L_chr),
y = !!rlang::sym(predd_val_var_nm_1L_chr))) + ggplot2::geom_point() +
ggplot2::geom_smooth(method = "loess", size = 1.5) +
ggplot2::theme_bw() + ggplot2::geom_abline(intercept = 0,
slope = 1, color = "red", linetype = "dashed", size = 1.5) +
ggplot2::xlim(0, 1) + ggplot2::ylim(0, 1)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.