| perturb_dataset | R Documentation |
Given a boolean matrix, randomly add False Positives (FP), False Negatives (FN) and Missing data following user defined rates. In the final matrix, missing data is represented by the value 3.
perturb_dataset(dataset, FP_rate = 0, FN_rate = 0, MIS_rate = 0)
dataset |
a matrix/sparse matrix |
FP_rate |
False Positive rate |
FN_rate |
False Negative rate |
MIS_rate |
Missing Data rate |
Note that CIMICE does not support dataset with missing data natively, so using MIS_rate != 0 will then require some pre-processing.
the new, perturbed, matrix
require(dplyr)
example_dataset() %>%
make_generator_stub() %>%
set_generator_edges(
list(
"D", "A, D", 1 ,
"A", "A, D", 1 ,
"A, D", "A, C, D", 1 ,
"A, D", "A, B, D", 1 ,
"Clonal", "D", 1 ,
"Clonal", "A", 1 ,
"D", "D", 1 ,
"A", "A", 1 ,
"A, D", "A, D", 1 ,
"A, C, D", "A, C, D", 1 ,
"A, B, D", "A, B, D", 1 ,
"Clonal", "Clonal", 1
)) %>%
finalize_generator %>%
simulate_generator(3, 10) %>%
perturb_dataset(FP_rate = 0.01, FN_rate = 0.1, MIS_rate = 0.12)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.