#!/usr/bin/env Rscript
## ---- Install packages ----
# install.packages("opencv")
## ---- load packages ----
library(RestRserve)
library(opencv)
## ---- create handler for the HTTP requests ----
check_request = function(request, types, limit) {
if (length(request$body) == 0L) {
raise(HTTPError$bad_request())
}
if (length(request$body) > limit) {
raise(HTTPError$payload_too_large())
}
return(invisible(TRUE))
}
face_handler = function(request, response) {
allowed_types = paste("application", c("jpeg", "png"), sep = "/")
allowed_limit = 10 * 1024 * 1024 # 10 Mb
check_request(request, allowed_types, allowed_limit)
# ocv_read can't read a raw vector (save it to file)
tmp = tempfile()
# clean up after processing
on.exit(unlink(tmp))
# write raw vector to file
writeBin(as.raw(request$body), tmp)
# read image
img = ocv_read(tmp)
# detect faces
faces = ocv_facemask(img)
# extract faces centers coordinates and radius
faces_data = attr(faces, "faces")
response$set_body(faces_data)
response$set_content_type("application/json")
}
## ---- create application -----
app = Application$new(
content_type = "application/json",
middleware = list()
)
## ---- register endpoints and corresponding R handlers ----
app$add_post(
path = "/faces",
FUN = face_handler
)
## ---- register content handlers -----
enc_dec_mw = EncodeDecodeMiddleware$new()
allowed_types = c("application/jpeg", "application/png")
for (type in allowed_types) {
enc_dec_mw$ContentHandlers$set_decode(type, identity)
}
app$append_middleware(enc_dec_mw)
## ---- start application ----
backend = BackendRserve$new()
# backend$start(app, http_port = 8080)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.