Description Usage Arguments Details Value Examples
rcate.am
fit additive model for robust treatment effect estimation.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | rcate.am(
x,
y,
d,
method = "MCMEA",
nknots = NA,
lambda.smooth = 1,
nlambda = 30,
nfolds = 5,
n.trees.p = 40000,
shrinkage.p = 0.005,
n.minobsinnode.p = 10,
interaction.depth.p = 1,
cv.p = 2,
n.trees.mu = c(1:50) * 50,
shrinkage.mu = 0.01,
n.minobsinnode.mu = 5,
interaction.depth.mu = 5,
cv.mu = 5
)
|
x |
matrix or a data frame of predictors. |
y |
vector of response values. |
d |
vector of binary treatment assignment (0 or 1). |
method |
character string of CATE estimation method: "MCMEA" - modified co-variate method with efficiency augmentation or "RL" - R-learning. |
nknots |
number of knots for B-spline. |
lambda.smooth |
scalar represent the smoothness penalty lambda2. The default is 2. |
nlambda |
number of lambda1s for cross-validation. The default is 30. |
nfolds |
number of folds for cross-validation. The default is 5. |
n.trees.p |
tuning parameter the number of trees used for estimating propensity score with GBM. the default value is 40000. |
shrinkage.p |
tuning parameter the shrinkage level for estimating propensity score with GBM. the default value is 0.005. |
n.minobsinnode.p |
tuning parameter the minimum node size for estimating propensity score with GBM. the default value is 10. |
interaction.depth.p |
tuning parameter the number of interactions for estimating propensity score with GBM. the default value is 1. |
cv.p |
tuning parameter the number of folds in cross-validation for estimating propensity score with GBM. the default value is 2. |
n.trees.mu |
scalar or vector of the number of trees for estimating mean function with GBM. The default is (1:50)*50. |
shrinkage.mu |
tuning parameter the shrinkage level for estimating mean function with GBM. the default value is 0.01. |
n.minobsinnode.mu |
tuning parameter the minimum node size for estimating mean function with GBM. the default value is 10. |
interaction.depth.mu |
tuning parameter the number of interactions for estimating mean function with GBM. the default value is 5. |
cv.mu |
tuning parameter the folds for cross-validation for estimating mean function with GBM. The default value is 5. |
Fits a L_1 additive regression model with the group SCAD penalty.
a list of components
model - the robust estimation model of CATE.
method - estimation method.
algorithm - fitting algorithm.
lambda.smooth
fitted.values - vector of fitted values.
x - matrix of predictors.
y - vector of response values.
d - vector of treatment assignment.
y.tr - transformed outcome.
w.tr - transformed weight.
coef -coefficients.
colnum - column number.
nknots - number of knots of cubic spline.
param - required parameters for utility functions.
1 2 3 4 5 6 7 8 9 10 11 12 13 | n <- 1000; p <- 2; set.seed(2223)
X <- as.data.frame(matrix(runif(n*p,-3,3),nrow=n,ncol=p))
tau = 3*X[,1]-2*X[,2]
p = 1/(1+exp(-X[,1]+X[,2]))
d = rbinom(n,1,p)
t = 2*d-1
y = 100+tau*t/2 + rnorm(n,0,1); set.seed(2223)
x_val = as.data.frame(matrix(rnorm(200*2,0,1),nrow=200,ncol=2))
tau_val = 3*x_val[,1]-2*x_val[,2]
fit <- rcate.am(X,y,d,lambda.smooth = 4, method = 'RL')
y_pred <- predict(fit,x_val)$pred
plot(tau_val,y_pred);abline(0,1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.