Description Usage Arguments Value Examples
rcate.rf
return robust estimation of treatment effect using random forests.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
x |
matrix or a data frame of predictors. |
y |
vector of response values. |
d |
vector of binary treatment assignment (0 or 1). |
method |
character string of CATE estimation method: "MCMEA" - modified co-variate method with efficiency augmentation, "RL" - R-learning, or "DR" - doubly robust method. |
n.trees.rf |
tuning parameter the number of trees used in GBM for estimating treatment effect function if algorithm="GBM". The default is 1000. |
feature.frac |
tuning parameter the number of interactions for estimating treatment effect function if algorithm="GBM". The default value is 2. |
minnodes |
vector of the dropout rate of each hidden layer if algorithm='NN'. The default is no dropout. |
n.trees.p |
tuning parameter the number of trees used for estimating propensity score with GBM. the default value is 40000. |
shrinkage.p |
tuning parameter the shrinkage level for estimating propensity score with GBM. the default value is 0.005. |
n.minobsinnode.p |
tuning parameter the minimum node size for estimating propensity score with GBM. the default value is 10. |
interaction.depth.p |
tuning parameter the number of interactions for estimating propensity score with GBM. the default value is 1. |
cv.p |
tuning parameter the number of folds in cross-validation for estimating propensity score with GBM. the default value is 2. |
n.trees.mu |
scalar or vector of the number of trees for estimating mean function with GBM. The default is (1:50)*50. |
shrinkage.mu |
tuning parameter the shrinkage level for estimating mean function with GBM. the default value is 0.01. |
n.minobsinnode.mu |
tuning parameter the minimum node size for estimating mean function with GBM. the default value is 10. |
interaction.depth.mu |
tuning parameter the number of interactions for estimating mean function with GBM. the default value is 5. |
cv.mu |
tuning parameter the folds for cross-validation for estimating mean function with GBM. The default value is 5. |
a list of components
fit - estimation method.
importance - vector of variable importance.
tree - trees' structure and needed parameters.
data - training data.
nodepreds - leaf nodes predictions.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | n <- 1000; p <- 3
X <- as.data.frame(matrix(runif(n*p,-3,3),nrow=n,ncol=p)); set.seed(2223)
tau = 6*sin(2*X[,1])+3*(X[,2]+3)*X[,3]
p = 1/(1+exp(-X[,1]+X[,2]))
d = rbinom(n,1,p)
t = 2*d-1
y = 100+4*X[,1]+X[,2]-3*X[,3]+tau*t/2 + rnorm(n,0,1); set.seed(2223)
x_val = as.data.frame(matrix(rnorm(200*3,0,1),nrow=200,ncol=3))
tau_val = 6*sin(2*x_val[,1])+3*(x_val[,2]+3)*x_val[,3]
# Use MCM-EA transformation and GBM to estimate CATE
fit <- rcate.rf(X,y,d,method='DR',feature.frac = 0.8, minnodes = 3, n.trees.rf = 5)
y_pred <- predict(fit,x_val)$pred
plot(tau_val,y_pred);abline(0,1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.