makeTuneControlGrid: Create control object for hyperparameter tuning with grid...

Description Usage Arguments Value See Also

View source: R/TuneControlGrid.R

Description

A basic grid search can handle all kinds of parameter types. You can either use their correct param type and resolution, or discretize them yourself by always using makeDiscreteParam in the par.set passed to tuneParams.

Usage

1
2
3
makeTuneControlGrid(same.resampling.instance = TRUE, impute.val = NULL,
  resolution = 10L, tune.threshold = FALSE, tune.threshold.args = list(),
  log.fun = "default", final.dw.perc = NULL, budget = NULL)

Arguments

same.resampling.instance

[logical(1)]
Should the same resampling instance be used for all evaluations to reduce variance? Default is TRUE.

impute.val

[numeric]
If something goes wrong during optimization (e.g. the learner crashes), this value is fed back to the tuner, so the tuning algorithm does not abort. It is not stored in the optimization path, an NA and a corresponding error message are logged instead. Note that this value is later multiplied by -1 for maximization measures internally, so you need to enter a larger positive value for maximization here as well. Default is the worst obtainable value of the performance measure you optimize for when you aggregate by mean value, or Inf instead. For multi-criteria optimization pass a vector of imputation values, one for each of your measures, in the same order as your measures.

resolution

[integer]
Resolution of the grid for each numeric/integer parameter in par.set. For vector parameters, it is the resolution per dimension. Either pass one resolution for all parameters, or a named vector. See generateGridDesign. Default is 10.

tune.threshold

[logical(1)]
Should the threshold be tuned for the measure at hand, after each hyperparameter evaluation, via tuneThreshold? Only works for classification if the predict type is “prob”. Default is FALSE.

tune.threshold.args

[list]
Further arguments for threshold tuning that are passed down to tuneThreshold. Default is none.

log.fun

[function | character(1)]
Function used for logging. If set to “default” (the default), the evaluated design points, the resulting performances, and the runtime will be reported. If set to “memory”, the memory usage for each evaluation will also be displayed, with a small increase in run time. Otherwise a function with arguments learner, resampling, measures, par.set, control, opt.path, dob, x, y, remove.nas, stage, and prev.stage is expected. The default displays the performance measures, the time needed for evaluating, the currently used memory and the max memory ever used before (the latter two both taken from gc). See the implementation for details.

final.dw.perc

[boolean]
If a Learner wrapped by a makeDownsampleWrapper is used, you can define the value of dw.perc which is used to train the Learner with the final parameter setting found by the tuning. Default is NULL which will not change anything.

budget

[integer(1)]
Maximum budget for tuning. This value restricts the number of function evaluations. If set, must equal the size of the grid.

Value

[TuneControlGrid]

See Also

Other tune: TuneControl, getNestedTuneResultsOptPathDf, getNestedTuneResultsX, getTuneResult, makeModelMultiplexerParamSet, makeModelMultiplexer, makeTuneControlCMAES, makeTuneControlDesign, makeTuneControlGenSA, makeTuneControlIrace, makeTuneControlMBO, makeTuneControlRandom, makeTuneWrapper, tuneParams, tuneThreshold


riebetob/mlr documentation built on May 20, 2019, 5:58 p.m.