Description Usage Arguments Value See Also Examples
Fuses a base learner with a search strategy to select its hyperparameters.
Creates a learner object, which can be used like any other learner object,
but which internally uses tuneParams
.
If the train function is called on it,
the search strategy and resampling are invoked
to select an optimal set of hyperparameter values. Finally, a model is fitted on the
complete training data with these optimal hyperparameters and returned.
See tuneParams
for more details.
After training, the optimal hyperparameters (and other related information) can be retrieved with
getTuneResult
.
1 2 | makeTuneWrapper(learner, resampling, measures, par.set, control,
show.info = getMlrOption("show.info"))
|
learner |
[ |
resampling |
[ |
measures |
[list of |
par.set |
[ |
control |
[ |
show.info |
[ |
[Learner
].
Other tune: TuneControl
,
getNestedTuneResultsOptPathDf
,
getNestedTuneResultsX
,
getTuneResult
,
makeModelMultiplexerParamSet
,
makeModelMultiplexer
,
makeTuneControlCMAES
,
makeTuneControlDesign
,
makeTuneControlGenSA
,
makeTuneControlGrid
,
makeTuneControlIrace
,
makeTuneControlMBO
,
makeTuneControlRandom
,
tuneParams
, tuneThreshold
Other wrapper: makeBaggingWrapper
,
makeClassificationViaRegressionWrapper
,
makeConstantClassWrapper
,
makeCostSensClassifWrapper
,
makeCostSensRegrWrapper
,
makeDownsampleWrapper
,
makeDummyFeaturesWrapper
,
makeExtractFDAFeatsWrapper
,
makeFeatSelWrapper
,
makeFilterWrapper
,
makeImputeWrapper
,
makeMulticlassWrapper
,
makeMultilabelBinaryRelevanceWrapper
,
makeMultilabelClassifierChainsWrapper
,
makeMultilabelDBRWrapper
,
makeMultilabelNestedStackingWrapper
,
makeMultilabelStackingWrapper
,
makeOverBaggingWrapper
,
makePreprocWrapperCaret
,
makePreprocWrapper
,
makeRemoveConstantFeaturesWrapper
,
makeSMOTEWrapper
,
makeUndersampleWrapper
,
makeWeightedClassesWrapper
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | task = makeClassifTask(data = iris, target = "Species")
lrn = makeLearner("classif.rpart")
# stupid mini grid
ps = makeParamSet(
makeDiscreteParam("cp", values = c(0.05, 0.1)),
makeDiscreteParam("minsplit", values = c(10, 20))
)
ctrl = makeTuneControlGrid()
inner = makeResampleDesc("Holdout")
outer = makeResampleDesc("CV", iters = 2)
lrn = makeTuneWrapper(lrn, resampling = inner, par.set = ps, control = ctrl)
mod = train(lrn, task)
print(getTuneResult(mod))
# nested resampling for evaluation
# we also extract tuned hyper pars in each iteration
r = resample(lrn, task, outer, extract = getTuneResult)
print(r$extract)
getNestedTuneResultsOptPathDf(r)
getNestedTuneResultsX(r)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.