Description Usage Arguments Value See Also
View source: R/OverUndersampleWrapper.R
Creates a learner object, which can be
used like any other learner object.
Internally uses oversample
or undersample
before every model fit.
Note that observation weights do not influence the sampling and are simply passed down to the next learner.
1 2 3 | makeUndersampleWrapper(learner, usw.rate = 1, usw.cl = NULL)
makeOversampleWrapper(learner, osw.rate = 1, osw.cl = NULL)
|
learner |
[ |
usw.rate |
[ |
usw.cl |
[ |
osw.rate |
[ |
osw.cl |
[ |
[Learner
].
Other imbalancy: makeOverBaggingWrapper
,
oversample
, smote
Other wrapper: makeBaggingWrapper
,
makeClassificationViaRegressionWrapper
,
makeConstantClassWrapper
,
makeCostSensClassifWrapper
,
makeCostSensRegrWrapper
,
makeDownsampleWrapper
,
makeDummyFeaturesWrapper
,
makeExtractFDAFeatsWrapper
,
makeFeatSelWrapper
,
makeFilterWrapper
,
makeImputeWrapper
,
makeMulticlassWrapper
,
makeMultilabelBinaryRelevanceWrapper
,
makeMultilabelClassifierChainsWrapper
,
makeMultilabelDBRWrapper
,
makeMultilabelNestedStackingWrapper
,
makeMultilabelStackingWrapper
,
makeOverBaggingWrapper
,
makePreprocWrapperCaret
,
makePreprocWrapper
,
makeRemoveConstantFeaturesWrapper
,
makeSMOTEWrapper
,
makeTuneWrapper
,
makeWeightedClassesWrapper
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.