makeDownsampleWrapper: Fuse learner with simple downsampling (subsampling).

Description Usage Arguments Value See Also

View source: R/DownsampleWrapper.R

Description

Creates a learner object, which can be used like any other learner object. It will only be trained on a subset of the original data to save computational time.

Usage

1
makeDownsampleWrapper(learner, dw.perc = 1, dw.stratify = FALSE)

Arguments

learner

[Learner | character(1)]
The learner. If you pass a string the learner will be created via makeLearner.

dw.perc

[numeric(1)]
See downsample. Default is 1.

dw.stratify

[logical(1)]
See downsample. Default is FALSE.

Value

[Learner].

See Also

Other downsample: downsample

Other wrapper: makeBaggingWrapper, makeClassificationViaRegressionWrapper, makeConstantClassWrapper, makeCostSensClassifWrapper, makeCostSensRegrWrapper, makeDummyFeaturesWrapper, makeExtractFDAFeatsWrapper, makeFeatSelWrapper, makeFilterWrapper, makeImputeWrapper, makeMulticlassWrapper, makeMultilabelBinaryRelevanceWrapper, makeMultilabelClassifierChainsWrapper, makeMultilabelDBRWrapper, makeMultilabelNestedStackingWrapper, makeMultilabelStackingWrapper, makeOverBaggingWrapper, makePreprocWrapperCaret, makePreprocWrapper, makeRemoveConstantFeaturesWrapper, makeSMOTEWrapper, makeTuneWrapper, makeUndersampleWrapper, makeWeightedClassesWrapper


riebetob/mlr documentation built on May 20, 2019, 5:58 p.m.