Description Usage Arguments Value See Also
View source: R/ConstantClassWrapper.R
If the training data contains only a single class (or almost only a single class), this wrapper creates a model that always predicts the constant class in the training data. In all other cases, the underlying learner is trained and the resulting model used for predictions.
Probabilities can be predicted and will be 1 or 0 depending on whether the label matches the majority class or not.
1 | makeConstantClassWrapper(learner, frac = 0)
|
learner |
[ |
frac |
[numeric(1)] |
[Learner
].
Other wrapper: makeBaggingWrapper
,
makeClassificationViaRegressionWrapper
,
makeCostSensClassifWrapper
,
makeCostSensRegrWrapper
,
makeDownsampleWrapper
,
makeDummyFeaturesWrapper
,
makeExtractFDAFeatsWrapper
,
makeFeatSelWrapper
,
makeFilterWrapper
,
makeImputeWrapper
,
makeMulticlassWrapper
,
makeMultilabelBinaryRelevanceWrapper
,
makeMultilabelClassifierChainsWrapper
,
makeMultilabelDBRWrapper
,
makeMultilabelNestedStackingWrapper
,
makeMultilabelStackingWrapper
,
makeOverBaggingWrapper
,
makePreprocWrapperCaret
,
makePreprocWrapper
,
makeRemoveConstantFeaturesWrapper
,
makeSMOTEWrapper
,
makeTuneWrapper
,
makeUndersampleWrapper
,
makeWeightedClassesWrapper
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.