context("classif_rpart")
test_that("classif_rpart", {
requirePackagesOrSkip("rpart", default.method = "load")
parset.list = list(
list(),
list(minsplit = 10, cp = 0.005),
list(minsplit = 50, cp = 0.05),
list(minsplit = 50, cp = 0.999),
list(minsplit = 1, cp = 0.0005)
)
old.predicts.list = list()
old.probs.list = list()
for (i in seq_along(parset.list)) {
parset = parset.list[[i]]
pars = list(formula = multiclass.formula, data = multiclass.train)
pars = c(pars, parset)
set.seed(getOption("mlr.debug.seed"))
m = do.call(rpart::rpart, pars)
p = predict(m, newdata = multiclass.test, type = "class")
p2 = predict(m, newdata = multiclass.test, type = "prob")
old.predicts.list[[i]] = p
old.probs.list[[i]] = p2
}
testSimpleParsets("classif.rpart", multiclass.df, multiclass.target, multiclass.train.inds, old.predicts.list, parset.list)
testProbParsets("classif.rpart", multiclass.df, multiclass.target, multiclass.train.inds, old.probs.list, parset.list)
tt = rpart::rpart
tp = function(model, newdata) predict(model, newdata, type = "class")
testCVParsets("classif.rpart", multiclass.df, multiclass.target, tune.train = tt, tune.predict = tp, parset.list = parset.list)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.