context("regr_btgpllm")
test_that("regr_btgpllm", {
requirePackagesOrSkip("tgp", default.method = "load")
parset.list = list(
list(),
list(meanfn = "linear", bprior = "bflat", corr = "expsep")
)
df = regr.df[, 2:5]
col.types = vcapply(df, function(x) class(x))
factor.ind = (col.types == "factor")
df.num = df[, !factor.ind, drop = FALSE]
n.num = ncol(df.num)
df.factor = df[, factor.ind, drop = FALSE]
df.factor = createDummyFeatures(df.factor, method = "reference")
df = cbind(df.num, df.factor)
inds = 1:10
train = df[inds, ]
test = df[-inds, ]
y = regr.df[inds, regr.target]
old.predicts.list = list()
for (i in seq_along(parset.list)) {
parset = parset.list[[i]]
pars = list(X = train, Z = y, verb = 0, basemax = n.num, pred.n = FALSE)
pars = c(pars, parset)
set.seed(getOption("mlr.debug.seed"))
m = do.call(tgp::btgpllm, pars)
old.predicts.list[[i]] = predict(m, XX = test, pred.n = FALSE)$ZZ.km
}
testSimpleParsets("regr.btgpllm", regr.df[, c(2:5, 14)], regr.target, inds, old.predicts.list, parset.list)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.