context("regr_glmnet")
test_that("regr_glmnet", {
requirePackagesOrSkip("glmnet", default.method = "load")
parset.list = list(
list(),
list(alpha = 0.7, fdev = 0.0001),
list(s = 0.3)
)
old.predicts.list = list()
for (i in seq_along(parset.list)) {
parset = parset.list[[i]]
s = parset[["s"]]
if (is.null(s)) s = 0.01
parset[["s"]] = NULL
ind = match(regr.target, names(regr.train))
x = regr.train[, -ind]
x$chas = as.numeric(x$chas)
y = regr.train[, ind]
pars = list(x = as.matrix(x), y = y, family = "gaussian")
pars = c(pars, parset)
glmnet::glmnet.control(factory = TRUE)
ctrl.args = names(formals(glmnet::glmnet.control))
set.seed(getOption("mlr.debug.seed"))
if (any(names(pars) %in% ctrl.args)) {
on.exit(glmnet::glmnet.control(factory = TRUE))
do.call(glmnet::glmnet.control, pars[names(pars) %in% ctrl.args])
m = do.call(glmnet::glmnet, pars[!names(pars) %in% ctrl.args])
} else {
m = do.call(glmnet::glmnet, pars)
}
newx = regr.test[, -ind]
newx$chas = as.numeric(newx$chas)
old.predicts.list[[i]] = predict(m, as.matrix(newx), s = s)[, 1]
}
test.dat = regr.df
test.dat$chas = as.numeric(test.dat$chas)
testSimpleParsets("regr.glmnet", test.dat, regr.target, regr.train.inds, old.predicts.list, parset.list)
})
test_that("regr_glmnet works with poisson", {
# set some dummy counts
d = regr.df
d[, regr.target] = sample(1:100, getTaskSize(regr.task), replace = TRUE)
task = makeRegrTask(data = d, target = regr.target)
lrn = makeLearner("regr.glmnet", family = "poisson")
r = holdout(lrn, task)
expect_true(!is.na(r$aggr))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.