context("surv_glmboost")
test_that("surv_glmboost", {
requirePackagesOrSkip(c("survival", "mboost"), default.method = "load")
parset.list1 = list(
list(family = mboost::CoxPH()),
list(family = mboost::CoxPH(), control = mboost::boost_control(mstop = 100L, nu = 0.1)),
list(family = mboost::Weibull(nuirange = c(0, 50.5)), control = mboost::boost_control(mstop = 50L, nu = 1)),
list(family = mboost::Gehan(), control = mboost::boost_control(mstop = 100L, nu = 0.5))
)
parset.list2 = list(
list(),
list(mstop = 100L, nu = 0.1),
list(family = "Weibull", nuirange = c(0, 50.5), mstop = 50L, nu = 1),
list(family = "Gehan", mstop = 100L, nu = 0.5)
)
old.predicts.list = list()
for (i in seq_along(parset.list1)) {
parset = parset.list1[[i]]
f = getTaskFormula(surv.task)
pars = list(f, data = surv.train)
pars = c(pars, parset)
set.seed(getOption("mlr.debug.seed"))
m = do.call(mboost::glmboost, pars)
p = predict(m, newdata = surv.test, type = "link")
old.predicts.list[[i]] = drop(p)
}
testSimpleParsets("surv.glmboost", surv.df, surv.target, surv.train.inds, old.predicts.list, parset.list2)
# test alternative matrix interface
mod1 = train(makeLearner("surv.glmboost", use.formula = FALSE, center = FALSE), wpbc.task)
mod2 = train(makeLearner("surv.glmboost", use.formula = TRUE, center = FALSE), wpbc.task)
expect_equal(coef(mod1$learner.model), coef(mod2$learner.model))
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.