#' Imports the raster and point layers. Creates a raster stack. Checks the point data for inconsistency problems and removes blanks.
#' @param rasters A string of raster file names.
#' @param points The name of a .csv file.
#' @param extents_raster A raster of the desired study extent.
#' @return A list of objecgs predictors (a raster stack) and plots (a data.table).
#' @export
#' @import data.table
#' @import bit64
#' @examples
#' plots_import(input_rasters,input_points, extents_raster)
plots_import <- function(predictors, plots, extents_raster){
xy <- plots[, .(p.lon, p.lat)]
dt <- plots[, !c("V1","p.lat","p.lon"), with=FALSE]
spdt <- sp::SpatialPointsDataFrame(
coords = xy,
data = dt,
proj4string = sp::CRS(
"+proj=longlat +datum=WGS84"))
spdt <- raster::crop(
spdt,
extents_raster)
plots_raster <- raster::rasterize(
x = spdt,
y = predictors,
field = 'treecount',
fun=sum,
background = 0)
spdt <- rasterToPoints(plots_raster,
fun=NULL,
spatial=TRUE)
plots <- as.data.table(
raster::extract(predictors,
spdt,
method='simple',
sp=TRUE))
plots
}
# TDL## examples need data import step or use default data
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.