#' Goodness of fit of non-extreme marginal distributions
#'
#' Fits two (unbounded) non-extreme marginal distributions to a dataset and returns three plots demonstrating their relative goodness of fit.
#'
#' @param Data Numeric vector containing realizations of the variable of interest.
#' @param x_lab Character vector of length one specifying the label on the x-axis of histogram and cumulative distribution plot.
#' @param y_lim_min Numeric vector of length one specifying the lower y-axis limit of the histogram. Default is \code{0}.
#' @param y_lim_max Numeric vector of length one specifying the upper y-axis limit of the histogram. Default is \code{1}.
#' @return Name of the best fitting distribution \code{Best_fit}. Panel consisting of three plots. Upper plot: Plot depicting the AIC of the two fitted distributions. Middle plot: Probability Density Functions (PDFs) of the fitted distributions superimposed on a histogram of the data. Lower plot: Cumulative Distribution Functions (CDFs) of the fitted distributions overlaid on a plot of the empirical CDF.
#' @seealso \code{\link{Copula_Threshold_2D}}
#' @export
#' @examples
#' S20.Rainfall<-Con_Sampling_2D(Data_Detrend=S20.Detrend.df[,-c(1,4)],
#' Data_Declust=S20.Detrend.Declustered.df[,-c(1,4)],
#' Con_Variable="Rainfall",Thres=0.97)
#' Diag_Non_Con(Data=S20.Rainfall$Data$OsWL,x_lab="O-sWL (ft NGVD 29)",
#' y_lim_min=0,y_lim_max=1.5)
Diag_Non_Con<-function(Data,x_lab,y_lim_min=0,y_lim_max=1){
par(mfrow=c(3,1))
par(mar=c(4.2,4.2,1,1))
#AIC
fit<-fitdistr(Data,"logistic")
AIC.Logistic<-2*length(fit$estimate)-2*fit$loglik
fit<-fitdistr(Data, "normal")
AIC.Normal<-2*length(fit$estimate)-2*fit$loglik
mypalette<-brewer.pal(9,"Set1")
plot(0,xlim=c(0,2),ylim=c(min(0,AIC.Normal,AIC.Logistic),max(0,AIC.Normal,AIC.Logistic)),type='n',xlab="Probability Distribution",ylab="AIC",xaxt='n',cex.axis=1,cex.lab=1,las=1)
axis(1,seq(0.5,1.5,1),c("Gaus","Logis"),cex.axis=0.71)
rect(0.25,0,0.75,AIC.Normal,col=mypalette[4])
rect(1.25,0,1.75,AIC.Logistic,col=mypalette[6])
hist(Data, freq=FALSE,xlab=x_lab,col="white",main="",cex.lab=1,cex.axis=1,ylim=c(y_lim_min,y_lim_max),las=1)
x<-seq(min(Data),max(Data),0.01)
#text(5.35,0.1,"(f)",font=2,cex=1.75)
fit<-fitdistr(Data, "normal")
lines(x,dnorm(x,fit$estimate[1],fit$estimate[2]),col=mypalette[4],lwd=2)
fit<-fitdistr(Data,"logistic")
lines(x,dlogis(x,fit$estimate[1],fit$estimate[2]),col=mypalette[6],lwd=2)
plot(sort(Data),seq(1,length(Data),1)/(length(Data)),ylim=c(0,1),xlab=x_lab,ylab="P(X<x)",main="",pch=16,cex.lab=1,cex.axis=1,las=1)
x<-seq(min(Data),max(Data),0.01)
eta<-sqrt((1/length(Data))*log(2/0.95))
lines(sort(Data),ifelse(seq(1,length(Data),1)/(length(Data))+eta>1,1,seq(1,length(Data),1)/(length(Data))+eta),col=1,lty=2)
lines(sort(Data),ifelse(seq(1,length(Data),1)/(length(Data))-eta<0,0,seq(1,length(Data),1)/(length(Data))-eta),col=1,lty=2)
legend("bottomright",c("95% Conf. Interval","Fitted distributions."),lty=c(2,1),col=c(1,1),cex=1,bty='n',border = "white")
#text(2,1,"(g)",font=2,cex=1.75)
fit<-fitdistr(Data,"normal")
lines(x,pnorm(x,fit$estimate[1],fit$estimate[2]),col=mypalette[4],lwd=2)
fit<-fitdistr(Data,"logistic")
lines(x,plogis(x,fit$estimate[1],fit$estimate[2]),col=mypalette[6],lwd=2)
Best_fit<-c("Gaus","Logis")[which(c(AIC.Normal,AIC.Logistic)==min(AIC.Normal,AIC.Logistic))]
return(Best_fit)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.