View source: R/distributions.r
dgampois | R Documentation |
Functions for computing density and producing random samples from a gamma-Poisson (negative-binomial) probability distribution.
dgampois( x , mu , scale , log=FALSE )
rgampois( n , mu , scale )
x |
Integer values to compute probabilies of |
mu |
Mean of gamma distribution |
scale |
Scale parameter of gamma distribution |
log |
If |
n |
Number of random observations to sample |
These functions provide density and random number calculations for gamma-Poisson observations. These functions use dnbinom
and rnbinom
internally, but convert the parameters from the mu
and scale
form. The size
parameter of the negative-binomial is defined by mu/scale
, and the prob
parameter of the negative-binomial is the same as 1/(1+scale)
.
Richard McElreath
## Not run:
data(Hurricanes)
# map model fit
# note exp(log_scale) to constrain scale to positive reals
m <- map(
alist(
deaths ~ dgampois( mu , exp(log_scale) ),
log(mu) <- a + b*femininity,
a ~ dnorm(0,100),
b ~ dnorm(0,1),
log_scale ~ dnorm(1,10)
),
data=Hurricanes )
# map2stan model fit
# constraint on scale is passed via contraints list
m.stan <- map2stan(
alist(
deaths ~ dgampois( mu , scale ),
log(mu) <- a + b*femininity,
a ~ dnorm(0,100),
b ~ dnorm(0,1),
scale ~ dcauchy(0,2)
),
data=Hurricanes,
constraints=list(scale="lower=0"),
start=list(scale=2) )
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.