# distributions
# bernoulli convenience functions
dbern <- function(x,prob,log=FALSE) {
dbinom(x,size=1,prob=prob,log=log)
}
rbern <- function(n,prob=0.5) {
rbinom(n,size=1,prob=prob)
}
# generalized pareto
dgpareto <- function( x , u=0 , shape=1 , scale=1 , log=FALSE ) {
if ( shape==0 ) {
lp <- log(1/scale) - (x-u)/scale
} else {
lp <- log(1/scale) - (1/shape+1) * log(1 + shape*(x-u)/scale)
}
if ( log==FALSE ) lp <- exp(lp)
return(lp)
}
rgpareto <- function( n , u=0 , shape=1 , scale=1 ) {
x <- runif(n)
if ( shape==0 )
x <- u - scale * log(x)
else
x <- u + scale*(x^(-shape) - 1)/shape
return(x)
}
dpareto <- function( x , xmin=0 , alpha=1 , log=FALSE ) {
y <- dgpareto( x , u=xmin , shape=1/alpha , scale=xmin/alpha , log=log )
return(y)
}
rpareto <- function( n , xmin=0 , alpha=1 ) {
y <- rgpareto( n=n , u=xmin , shape=1/alpha , scale=xmin/alpha )
return(y)
}
# ordered categorical density functions
logistic <- function( x ) {
p <- 1 / ( 1 + exp( -x ) )
p <- ifelse( x==Inf , 1 , p )
p
}
inv_logit <- function( x ) {
p <- 1 / ( 1 + exp( -x ) )
p <- ifelse( x==Inf , 1 , p )
p
}
logit <- function( x ) {
log( x ) - log( 1-x )
}
# complementary log log
# x is probability scale
cloglog <- function( x ) {
log(-log(1-x))
}
# inverse cloglog
inv_cloglog <- function( x ) {
p <- 1 - exp(-exp(x))
p <- ifelse( x==Inf , 1 , p )
p
}
pordlogit <- function( x , phi , a , log=FALSE ) {
a <- c( as.numeric(a) , Inf )
if ( length(phi) == 1 ) {
p <- logistic( a[x] - phi )
} else {
p <- matrix( NA , ncol=length(x) , nrow=length(phi) )
for ( i in 1:length(phi) ) {
p[i,] <- logistic( a[x] - phi[i] )
}
}
if ( log==TRUE ) p <- log(p)
p
}
dordlogit <- function( x , phi , a , log=FALSE ) {
a <- c( as.numeric(a) , Inf )
p <- logistic( a[x] - phi )
na <- c( -Inf , a )
np <- logistic( na[x] - phi )
p <- p - np
if ( log==TRUE ) p <- log(p)
p
}
rordlogit <- function( n , phi=0 , a ) {
a <- c( as.numeric(a) , Inf )
k <- 1:length(a)
if ( length(phi)==1 ) {
p <- dordlogit( k , a=a , phi=phi , log=FALSE )
y <- sample( k , size=n , replace=TRUE , prob=p )
} else {
# vectorized input
y <- rep(NA,n)
if ( n > length(phi) ) {
# need to repeat some phi values
phi <- rep(phi, ceiling(n/length(phi)) )
}
for ( i in 1:n ) {
p <- dordlogit( k , a=a , phi=phi[i] , log=FALSE )
y[i] <- sample( k , size=1 , replace=TRUE , prob=p )
}
}
y
}
# beta density functions parameterized as prob,theta
dbeta2 <- function( x , prob , theta , log=FALSE ) {
a <- prob * theta
b <- (1-prob) * theta
dbeta( x , shape1=a , shape2=b , log=log )
}
rbeta2 <- function( n , prob , theta ) {
a <- prob * theta
b <- (1-prob) * theta
rbeta( n , shape1=a , shape2=b )
}
# Ben Bolker's dbetabinom from emdbook package
dbetabinom <- function (x, size, prob, theta, shape1, shape2, log = FALSE)
{
if (missing(prob) && !missing(shape1) && !missing(shape2)) {
prob <- shape1/(shape1 + shape2)
theta <- shape1 + shape2
}
v <- lfactorial(size) - lfactorial(x) - lfactorial(size -
x) - lbeta(theta * (1 - prob), theta * prob) + lbeta(size -
x + theta * (1 - prob), x + theta * prob)
nonint <- function(x) (abs((x) - floor((x)+0.5)) > 1e-7)
if (any(n <- nonint(x))) {
warning("non-integer x detected; returning zero probability")
v[n] <- -Inf
}
if (log)
v
else exp(v)
}
rbetabinom <- function( n , size, prob, theta, shape1, shape2 ) {
if (missing(prob) && !missing(shape1) && !missing(shape2)) {
prob <- shape1/(shape1 + shape2)
theta <- shape1 + shape2
}
# first generate beta probs
p <- rbeta2( n , prob , theta )
# then generate binomial counts
y <- rbinom( n , size , p )
return(y)
}
# gamma-poisson functions
dgamma2 <- function( x , mu , scale , log=FALSE ) {
dgamma( x , shape=mu / scale , scale=scale , log=log )
}
rgamma2 <- function( n , mu , scale ) {
rgamma( n , shape=mu/scale , scale=scale )
}
dgampois <- function( x , mu , scale , log=FALSE ) {
shape <- mu / scale
prob <- 1 / ( 1 + scale )
dnbinom( x , size=shape , prob=prob , log=log )
}
rgampois <- function( n , mu , scale ) {
shape <- mu / scale
prob <- 1 / ( 1 + scale )
rnbinom( n , size=shape , prob=prob )
}
rgampois2 <- function (n , mu , scale) {
p_p <- scale / (scale + mu)
p_n <- scale
rnbinom(n, size = p_n, prob = p_p)
}
# laplace (double exponential)
dlaplace <- function(x,location=0,lambda=1,log=FALSE) {
# f(y) = (1/(2b)) exp( -|y-a|/b )
# l <- (1/(2*lambda))*exp( -abs(x-location)/lambda )
ll <- -abs(x-location)/lambda - log(2*lambda)
if ( log==FALSE ) ll <- exp(ll)
ll
}
rlaplace <- function(n,location=0,lambda=1) {
# generate from difference of two random exponentials with rate 1/lambda
y <- rexp(n=n,rate=1/lambda) - rexp(n=n,rate=1/lambda)
y <- y + location # offset location
y
}
# onion method correlation matrix - omits normalization constant
dlkjcorr <- function( x , eta=1 , log=TRUE ) {
ll <- det(x)^(eta-1)
if ( log==TRUE ) ll <- log(ll)
return(ll)
}
# Ben's rLKJ function
# K is dimension of matrix
rlkjcorr <- function ( n , K , eta = 1 ) {
stopifnot(is.numeric(K), K >= 2, K == as.integer(K))
stopifnot(eta > 0)
#if (K == 1) return(matrix(1, 1, 1))
f <- function() {
alpha <- eta + (K - 2)/2
r12 <- 2 * rbeta(1, alpha, alpha) - 1
R <- matrix(0, K, K) # upper triangular Cholesky factor until return()
R[1,1] <- 1
R[1,2] <- r12
R[2,2] <- sqrt(1 - r12^2)
if(K > 2) for (m in 2:(K - 1)) {
alpha <- alpha - 0.5
y <- rbeta(1, m / 2, alpha)
# Draw uniformally on a hypersphere
z <- rnorm(m, 0, 1)
z <- z / sqrt(crossprod(z)[1])
R[1:m,m+1] <- sqrt(y) * z
R[m+1,m+1] <- sqrt(1 - y)
}
return(crossprod(R))
}
R <- replicate( n , f() )
if ( dim(R)[3]==1 ) {
R <- R[,,1]
} else {
# need to move 3rd dimension to front, so conforms to array structure that Stan uses
R <- aperm(R,c(3,1,2))
}
return(R)
}
# wishart
rinvwishart <- function(s,df,Sigma,Prec) {
#s-by-s Inverse Wishart matrix, df degree of freedom, precision matrix
#Prec. Distribution of W^{-1} for Wishart W with nu=df+s-1 degree of
# freedom, covar martix Prec^{-1}.
# NOTE mean of riwish is proportional to Prec
if ( missing(Prec) ) Prec <- solve(Sigma)
if (df<=0) stop ("Inverse Wishart algorithm requires df>0")
R <- diag(sqrt(2*rgamma(s,(df + s - 1:s)/2)))
R[outer(1:s, 1:s, "<")] <- rnorm (s*(s-1)/2)
S <- t(solve(R))%*% chol(Prec)
return(t(S)%*%S)
}
log_sum_exp <- function( x ) {
xmax <- max(x)
xsum <- sum( exp( x - xmax ) )
xmax + log(xsum)
}
# faster but less accurate version
#dzipois <- function( x , p , lambda , log=TRUE ) {
# ll <- ifelse( x==0 , p + (1-p)*exp(-lambda) , (1-p)*dpois(x,lambda,FALSE) )
# log(ll)
#}
# zero-inflated poisson distribution
# this is slow, but accurate
dzipois <- function(x,p,lambda,log=FALSE) {
ll <- rep(0,length(x))
p_i <- p[1]
lambda_i <- lambda[1]
for ( i in 1:length(x) ) {
if ( length(p)>1 ) p_i <- p[i]
if ( length(lambda)>1 ) lambda_i <- lambda[i]
if ( x[i]==0 ) {
ll[i] <- log_sum_exp( c( log(p_i) , log(1-p_i)+dpois(x[i],lambda_i,TRUE) ) )
} else {
ll[i] <- log(1-p_i) + dpois(x[i],lambda_i,TRUE)
}
}
if ( log==FALSE ) ll <- exp(ll)
return(ll)
}
rzipois <- function(n,p,lambda) {
z <- rbinom(n,size=1,prob=p)
y <- (1-z)*rpois(n,lambda)
return(y)
}
# zero-augmented gamma2 distribution
dzagamma2 <- function(x,prob,mu,scale,log=FALSE) {
K <- as.data.frame(cbind(x=x,prob=prob,mu=mu,scale=scale))
llg <- dgamma( x , shape=mu/scale , scale=scale , log=TRUE )
ll <- ifelse( K$x==0 , log(K$prob) , log(1-K$prob) + llg )
if ( log==FALSE ) ll <- exp(ll)
ll
}
# zero-inflated binomial distribution
# this is slow, but accurate
dzibinom <- function(x,p_zero,size,prob,log=FALSE) {
ll <- rep(0,length(x))
pz_i <- p_zero[1]
size_i <- size[1]
prob_i <- prob[1]
for ( i in 1:length(x) ) {
if ( length(p_zero)>1 ) pz_i <- p_zero[i]
if ( length(size)>1 ) size_i <- size[i]
if ( length(prob)>1 ) prob_i <- prob[i]
if ( x[i]==0 ) {
ll[i] <- log_sum_exp( c( log(pz_i) , log(1-pz_i)+dbinom(x[i],size_i,prob_i,TRUE) ) )
} else {
ll[i] <- log(1-pz_i) + dbinom(x[i],size_i,prob_i,TRUE)
}
}
if ( log==FALSE ) ll <- exp(ll)
return(ll)
}
rzibinom <- function(n,p_zero,size,prob) {
z <- rbinom(n,size=1,prob=p_zero)
y <- (1-z)*rbinom(n,size,prob)
return(y)
}
# Student's t, with scale and location parameters
#dstudent <- function( x , nu , mu , sigma , log=TRUE ) {
#
#}
# generalized normal
dgnorm <- function( x , mu , alpha , beta , log=FALSE ) {
ll <- log(beta) - log( 2*alpha*gamma(1/beta) ) - (abs(x-mu)/alpha)^beta
if ( log==FALSE ) ll <- exp(ll)
return(ll)
}
# categorical distribution for multinomial models
dcategorical <- function( x , prob , log=TRUE ) {
if ( class(prob)=="matrix" ) {
# vectorized probability matrix
# length of x needs to match nrow(prob)
logp <- sapply( 1:nrow(prob) , function(i) log(prob[i,x[i]]) )
if ( log==FALSE ) logp <- exp(logp)
return( logp )
} else {
logp <- log(prob[x])
if ( log==FALSE ) logp <- exp(logp)
return(logp)
}
}
rcategorical <- function( n , prob ) {
k <- length(prob)
y <- sample( 1:k , size=n , prob=prob , replace=TRUE )
return(y)
}
### softmax rule for multinomial
multilogistic <- function( x , lambda=1 , diff=TRUE , log=FALSE ) {
if ( diff==TRUE ) x <- x - min(x)
f <- exp( lambda * x )
if ( log==FALSE ) result <- f / sum(f)
if ( log==TRUE ) result <- log(f) - log(sum(f))
result
}
# multinomial logit link
# needs to recognize vectors, as well
softmax <- function( ... ) {
X <- list(...)
K <- length(X)
if ( K==1 ) {
X <- X[[1]]
# vector or matrix?
if ( is.null(dim(X)) ) {
# vector
f <- exp( X )
denom <- sum(f)
p <- as.numeric(f/denom)
return(p)
} else {
# matrix - columns should be outcomes
N <- nrow(X)
f <- lapply( 1:N , function(i) exp(X[i,]) )
denom <- sapply( 1:N , function(i) sum(f[[i]]) )
p <- sapply( 1:N , function(i) unlist(f[[i]])/denom[i] )
p <- t(as.matrix(p))
return(p)
}
} else {
# comma separated inputs
X <- as.data.frame(X)
N <- nrow(X)
if ( N==1 ) {
# just a vector of probabilities
f <- exp( X[1,] )
denom <- sum(f)
p <- as.numeric(f/denom)
return(p)
} else {
f <- lapply( 1:N , function(i) exp(X[i,]) )
denom <- sapply( 1:N , function(i) sum(f[[i]]) )
p <- sapply( 1:N , function(i) unlist(f[[i]])/denom[i] )
p <- t(as.matrix(p))
colnames(p) <- NULL
return(p)
}
}
}
# dmvnorm2 - SRS form of multi_normal
# uses package mvtnorm
dmvnorm2 <- function( x , Mu , sigma , Rho , log=FALSE ) {
DS <- diag(sigma)
SIGMA <- DS %*% Rho %*% DS
dmvnorm(x, Mu, SIGMA, log=log )
}
# vectorized version of rmvnorm, with split scale vector and correlation matrix
rmvnorm2 <- function( n , Mu=rep(0,length(sigma)) , sigma=rep(1,length(Mu)) , Rho=diag(length(Mu)) , method="chol" ) {
ldim <- function(x) {
z <- length(dim(x))
if ( z==0 ) z <- 1
return(z)
}
if ( ldim(Mu)>1 || ldim(sigma)>1 || ldim(Rho)>2 ) {
m <- 0 # dimension of multi_normal
mR <- 0 # dim of Rho
# vectorization needed
# make Mu, sigma, and Rho same implied length
K_Mu <- 1
if ( ldim(Mu)==2 ) {
K_Mu <- dim(Mu)[1] # matrix
m <- dim(Mu)[2]
} else {
m <- length(Mu)
}
K_sigma <- 1
if ( ldim(sigma)==2 ) {
K_sigma <- dim(sigma)[1] # matrix
}
K_Rho <- 1
if ( ldim(Rho)==3 ) {
K_Rho <- dim(Rho)[1] # array (vector of matrices)
}
mR <- dim(Rho)[2] # should work whether Rho is matrix or array
# get largest dim
#K <- max( K_Mu , K_sigma , K_Rho )
K <- n
# need to fill to same size
if ( K_Mu < K ) {
Mu_new <- matrix( NA , nrow=K , ncol=m )
row_list <- rep( 1:K_Mu , length.out=K )
if ( K_Mu==1 )
for ( i in 1:K )
Mu_new[i,] <- Mu
else
for ( i in 1:K )
Mu_new[i,] <- Mu[row_list[i],]
Mu <- Mu_new
}
if ( K_sigma < K ) {
sigma_new <- matrix( NA , nrow=K , ncol=m )
row_list <- rep( 1:K_sigma , length.out=K )
for ( i in 1:K )
sigma_new[i,] <- sigma[row_list[i],]
sigma <- sigma_new
}
if ( K_Rho < K ) {
Rho_new <- array( NA , dim=c( K , m , m ) )
row_list <- rep( 1:K_Rho , length.out=K )
for ( i in 1:K )
Rho_new[i,,] <- Rho[row_list[i],,]
Rho <- Rho_new
}
# should all be same length now, so can brute force vectorize over and sample
result <- array( NA , dim=c( K , m ) )
for ( i in 1:n ) {
DS <- diag(sigma[i,])
SIGMA <- DS %*% Rho[i,,] %*% DS
result[i,] <- rmvnorm( n=1 , mean=Mu[i,] , sigma=SIGMA , method=method )
}
return(result)
} else {
DS <- diag(sigma)
SIGMA <- DS %*% Rho %*% DS
return( rmvnorm( n=n , mean=Mu , sigma=SIGMA , method=method ) )
}
}
# student t
dstudent <- function(x,nu=2,mu=0,sigma=1,log=FALSE) {
#y <- gamma((nu+1)/2)/(gamma(nu/2)*sqrt(pi*nu)*sigma) * ( 1 + (1/nu)*((x-mu)/sigma)^2 )^(-(nu+1)/2)
y <- lgamma((nu+1)/2) - lgamma(nu/2) - 0.5*log(pi*nu) - log(sigma) + (-(nu+1)/2)*log( 1 + (1/nu)*((x-mu)/sigma)^2 )
if ( log==FALSE ) y <- exp(y)
return(y)
}
rstudent <- function(n,nu=2,mu=0,sigma=1) {
y <- rt(n,df=nu)
y <- y*sigma + mu
return(y)
}
# function that transforms continuous to uniform
inv_unif <- function(x,lo=0,up=1) {
inv_logit(x)*(up-lo) + lo
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.