View source: R/map2stan-class.r
resample | R Documentation |
Sample from a new chain or chains, using a previous map2stan
fit object.
resample( object , iter=1e4 , warmup=1000 , chains=1 , cores=1 ,
DIC=TRUE , WAIC=TRUE , rng_seed , data , ... )
object |
Object of class |
iter |
Number of sampling iterations, including warmup |
warmup |
Number of adaptation steps |
chains |
Number of independent chains |
cores |
Number of cores to distribute chains across |
DIC |
If |
WAIC |
If |
rng_seed |
Optional seed to use for all chains. When missing, a random seed is chosen and used for all chains. |
... |
Other parameters to pass to |
This function is a convenience for drawing more samples from an initial map2stan
fit.
When cores
is set greater than 1, either mclapply
(on a unix system) or parLapply
(on a Windows system) is used to run the chains, distributing them across processor cores. The results are automatically recombined with sflist2stanfit
.
An object of class map2stan
, holding the new samples, as well as all of the original formulas and data for the model.
Richard McElreath
map2stan
, mclapply
, sflist2stanfit
## Not run:
data(Trolley)
d <- Trolley
d2 <- list(
y=d$response,
xA=d$action,
xI=d$intention,
xC=d$contact,
id=as.integer(d$id)
)
Nid <- length(unique(d2$id))
# ordered logit regression with varying intercepts
m.init <- map2stan(
alist(
y ~ dordlogit( phi , cutpoints ),
phi <- aj + bA*xA + bI*xI + bC*xC,
c(bA,bI,bC) ~ dnorm(0,1),
aj[id] ~ dnorm(0,sigma_id),
sigma_id ~ dcauchy(0,2.5),
cutpoints ~ dcauchy(0,2.5)
),
data=d2 ,
start=list(
bA=0,bI=0,bC=0,
cutpoints=c(-2,-1.7,-1,-0.2,0.5,1.3),
aj=rep(0,Nid),sigma_id=1
),
types=list(cutpoints="ordered") ,
iter=2
)
# Note: parallel chains won't work on Windows
m <- resample( m.init , chains=3 , cores=3 , warmup=1000 , iter=3000 )
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.