#' module_aglu_LB113.bio_Yield_R_GLU
#'
#' Calculate base year bioenergy yields by GCAM region and GLU
#'
#' @param command API command to execute
#' @param ... other optional parameters, depending on command
#' @return Depends on \code{command}: either a vector of required inputs,
#' a vector of output names, or (if \code{command} is "MAKE") all
#' the generated outputs: \code{L113.ag_bioYield_GJm2_R_GLU}. The corresponding file in the
#' original data system was \code{LB113.bio_Yield_R_GLU.R} (aglu level1).
#' @details Calculate global average yields for each FAO crop in the base year;
#' calculate each region / zone / crop's comparative yield; compute bioenergy yields as
#' this region/zone-specific index multiplied by a base yield.
#' @references Wullschleger, S.D., E.B. Davis, M.E. Borsuk, C.A. Gunderson, and L.R. Lynd. 2010.
#' Biomass production in switchgrass across the United States: database description and determinants
#' of yield. Agronomy Journal 102: 1158-1168. doi:10.2134/agronj2010.0087.
#' @importFrom assertthat assert_that
#' @importFrom dplyr filter mutate select
#' @importFrom tidyr gather spread
#' @author BBL June 2017
module_aglu_LB113.bio_Yield_R_GLU <- function(command, ...) {
if(command == driver.DECLARE_INPUTS) {
return(c(FILE = "common/iso_GCAM_regID",
"L100.LDS_ag_HA_ha",
"L100.LDS_ag_prod_t",
"L101.ag_HA_bm2_R_C_Y_GLU"))
} else if(command == driver.DECLARE_OUTPUTS) {
return(c("L113.ag_bioYield_GJm2_R_GLU"))
} else if(command == driver.MAKE) {
all_data <- list(...)[[1]]
value <- HA_ha <- HA <- Yield_avg <- Yield <- Ratio <- iso <- GCAM_region_ID <- GCAM_REGION_ID
GLU <- Ratio_weight <- . <- YieldIndex <- GTAP_crop <- NULL # silence package check notes
# Load required inputs
iso_GCAM_regID <- get_data(all_data, "common/iso_GCAM_regID")
L100.LDS_ag_HA_ha <- get_data(all_data, "L100.LDS_ag_HA_ha")
L100.LDS_ag_prod_t <- get_data(all_data, "L100.LDS_ag_prod_t")
L101.ag_HA_bm2_R_C_Y_GLU <- get_data(all_data, "L101.ag_HA_bm2_R_C_Y_GLU")
# Calculate global average yields for each FAO crop in the base year (31-39 old file)
L100.LDS_ag_HA_ha %>%
group_by(GTAP_crop) %>%
summarise(HA_ha = sum(value)) ->
L113.ag_HA_ha_glbl_crop
L100.LDS_ag_prod_t %>%
group_by(GTAP_crop) %>%
summarise(value = sum(value)) %>%
left_join_error_no_match(L113.ag_HA_ha_glbl_crop, by = "GTAP_crop") %>%
mutate(Yield_avg = value / HA_ha) ->
L113.ag_prod_t_glbl_crop
# Calculate each region / zone / crop's comparative yield (41-50)
L100.LDS_ag_HA_ha %>%
rename(HA = value) %>%
left_join_error_no_match(L100.LDS_ag_prod_t, by = c("iso", "GLU", "GTAP_crop")) %>%
mutate(Yield = value / HA) %>%
# Drop the missing values, where the harvested area was above the min threshold but production was not
na.omit ->
LDS_ag_Yield_tha
# Match in the global avg yield for each crop, sum up both area and the yield-to-avg-yield ratio
# by region and GLU, and then compute the area-weighted yield index (52-61)
# GPK 1/3/2019 modification: the inner_join step below guarantees that bioenergy grass yields are only estimated in
# land use regions that have harvested area in FAOSTAT. There are some countries (e.g. San Marino) in Monfreda/LDS
# but not FAOSTAT, which can lead to inconsistency in whether bioenergy grass crops are available in a given land
# use region.
LDS_ag_Yield_tha %>%
left_join_error_no_match(select(L113.ag_prod_t_glbl_crop, GTAP_crop, Yield_avg), by = "GTAP_crop") %>%
mutate(Ratio = Yield / Yield_avg,
Ratio_weight = Ratio * HA) %>%
left_join_error_no_match(select(iso_GCAM_regID, iso, GCAM_region_ID), by = "iso") %>%
group_by(GCAM_region_ID, GLU) %>%
summarise(HA = sum(HA), Ratio_weight = sum(Ratio_weight)) %>%
ungroup %>%
inner_join(distinct(select(L101.ag_HA_bm2_R_C_Y_GLU, GCAM_region_ID, GLU)),
by = c("GCAM_region_ID", "GLU")) %>%
mutate(YieldIndex = Ratio_weight / HA) ->
L113.YieldIndex_R_GLU
# Bioenergy yields are equal to this region/zone-specific index multiplied by a base yield
# The base yield is taken to be the maximum of the yields in the USA region, or the region
# containing the USA, because the Wullschleger paper (10.2134/agronj2010.0087)
# from which the yield estimate was derived was for the USA.
iso_GCAM_regID %>%
filter(iso == "usa") %>%
pull(GCAM_region_ID) ->
USAreg
L113.base_bio_yield_tha <- aglu.MAX_BIO_YIELD_THA / max(L113.YieldIndex_R_GLU$YieldIndex[L113.YieldIndex_R_GLU$GCAM_region_ID == USAreg])
L113.base_bio_yield_GJm2 <- L113.base_bio_yield_tha * aglu.BIO_ENERGY_CONTENT_GJT / CONV_HA_M2
L113.YieldIndex_R_GLU %>%
select(GCAM_region_ID, GLU, YieldIndex) %>%
mutate(Yield_GJm2 = YieldIndex * L113.base_bio_yield_GJm2) %>%
select(-YieldIndex) %>%
# Produce outputs
add_title("Base year bioenergy yields by GCAM region and GLU") %>%
add_units(" GJ/m2") %>%
add_comments("Calculate global average yields for each FAO crop in the base year;") %>%
add_comments("calculate each region / zone / crop's comparative yield; compute bioenergy yields") %>%
add_comments("as this region/zone-specific index multiplied by a base yield") %>%
add_legacy_name("L113.ag_bioYield_GJm2_R_GLU") %>%
add_precursors("common/iso_GCAM_regID",
"L100.LDS_ag_HA_ha",
"L100.LDS_ag_prod_t",
"L101.ag_HA_bm2_R_C_Y_GLU") ->
L113.ag_bioYield_GJm2_R_GLU
return_data(L113.ag_bioYield_GJm2_R_GLU)
} else {
stop("Unknown command")
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.