# Show equivalent kernels for the harmonic Whittaker smoother
# A graph in the book 'Practical Smoothing. The Joys of P-splines'
# Paul Eilers and Brian Marx, 2019
library(ggplot2)
library(JOPS)
library(gridExtra)
# Apply the Whittaker smoother with a harmonic penalty
n <- 201
E <- diag(n)
plts <- list()
lambda = 300
psis = c(0.95, 0.9, 0.8, 0.7)
for (jp in 1:4) {
psi = psis[jp]
dp = c(1, -2 * psi, 1)
D = matrix(0, n - 2, n)
for (j in 1:(n - 2)) D[j, j:(j + 2)] = dp
P = lambda * t(D) %*% D
H = solve(E + P)
# Prepare for ggplot
h = as.vector(H[, seq(1, n, length = 3)])
x <- 1:n
F1 <- data.frame(x = rep(x, 3), y = h, id = as.factor(rep(1:3, each = n)))
ttl = bquote(psi == .(psi) ~ lambda == .(lambda))
cols = rainbow(5)
# Make the plot
plt <- ggplot(F1, aes(x = x, y = y, color = id)) +
geom_hline(yintercept = 0, size = 0.3) +
geom_line() +
ggtitle(ttl) +
xlab("") + ylab("") +
JOPS_theme() +
theme(plot.title = element_text(size = 11)) +
theme(legend.position = "none")
plts[[jp]] <- plt
}
grid.arrange(grobs = plts, nrow = 2, ncol = 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.