rm(list = ls())
library(matrixStats)
library(MLmetrics)
library(stats)
source('R/FUNC_woodchan_samples.R')
source('R/FUNC_paramater_estimates.R')
source('R/DATA_generate_simulation.R')
source('R/FUNC_Gibbs_Sampler.R')
source('R/FUNC_Gibbs_Sampler_r.R')
source('R/PLOTS_Gibbs_sampler.R')
# Rcpp::sourceCpp('src/FUNC_paramater_estimates_c.cpp')
args=(commandArgs(TRUE))
if(length(args)==0){
print("No arguments supplied.")
##supply default values
stop("NO COMMAND LINE ARGUMENTS PASSED FOR R AND T")
}else{
for(i in 1:length(args)){
eval(parse(text=args[[i]]))
}
}
# t_vals = 20
n_datasets_sim = 100 # how many datasets are being run
# set up size of all initial datasets
mm = matrix(0, ncol = 15, nrow = 50)
vv = vector(length = 50)
ll = matrix(0, nrow = 50, ncol = n_datasets_sim)
gmu = matrix(0, nrow = 50, ncol = n_datasets_sim*t_vals)
beta = mm
sigma = vv
g_mu = gmu
beta_truth = mm
sigma_truth = vv
g_mu_truth = gmu
beta_high = mm
beta_low = mm
sigma_high = vv
sigma_low = vv
g_mu_high = ll
g_mu_low = gmu
beta_MSE = mm
sigma_MSE = vv
g_mu_MSE = gmu
beta_bias = mm
sigma_bias = vv
g_mu_bias = gmu
for (i in 1:50)
{
skip_to_next <- FALSE
# getting the filename for the current .rda file
# temp_filename = paste("RESULTS/", T_reps[idx], "_", i, ".rda", sep = "")
temp_filename = paste("RESULTS/results_n100_t", t_vals, "_rep", i, ".rda", sep = "")
# reading in the data that the simulation would have read in - reading in csv
data = generate_simulation_data(n_datasets = 100, n_time = t_vals, n_covariates = 15, seed = i, seed2 = i, xi_true = 1)
tryCatch(load(temp_filename), error = function(e) { skip_to_next <<- TRUE})
if (!skip_to_next)
{
beta[i,] = colMeans(results$beta)
beta_truth[i,] = data$beta_true
CI = t(colQuantiles(results$beta, probs = c(0.05, 0.95)))
beta_low[i,] = CI[1,] # CI - lower
beta_high[i,] = CI[2,] # CI - higher
beta_bias[i, ] = data$beta - colMeans(results$beta)
sigma[i] = mean(results$sigma_2)
sigma_truth[i] = data$sigma_2_true
CI = quantile(results$sigma_2, probs = c(0.05, 0.95))
sigma_low[i] = CI[1]
sigma_high[i] = CI[2]
sigma_bias[i] = data$sigma_2_true - mean(results$sigma_2)
# now get g + mu
mu = rep(colMeans(results$mu), each = t_vals)
g = colMeans(results$g)
g_mu[i,] = g + mu
# CI = quantile(g + mu, probs = c(0.05, 0.95))
# g_mu_low[i,] = CI[1,]
# g_mu_high[i,] = CI[2,]
# TODO fix this
g_mu_truth[i,] = unlist(data$g_true) + rep(data$mu_true, each = t_vals)
g_mu_bias[i,] = g_mu_truth[i,] - g_mu[i,]
}
print(paste(t_vals, "/", i))
}
# which ones to re-do
redo = which(rowMeans(beta) == 0)
if (length(redo) != 0)
{
print(paste("For t =", t_vals, "there are", length(redo)))
print(paste(redo, collapse = ","))
}
write_filename = "output/"
write.csv(beta, row.names = FALSE, file = paste(write_filename, "beta_", t_vals, ".csv", sep = ""))
write.csv(beta_truth, row.names = FALSE, file = paste(write_filename, "beta_truth_", t_vals, ".csv", sep = ""))
write.csv(sigma, row.names = FALSE, file = paste(write_filename, "sigma_", t_vals, ".csv", sep = ""))
write.csv(sigma_truth, row.names = FALSE, file = paste(write_filename, "sigma_truth_", t_vals, ".csv", sep = ""))
write.csv(g_mu, row.names = FALSE, file = paste(write_filename, "gpmu_", t_vals, ".csv", sep = ""))
write.csv(g_mu_truth, row.names = FALSE, file = paste(write_filename, "gmu_truth_", t_vals, ".csv", sep = ""))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.