#' Best subsets regression
#'
#' Select the subset of predictors that do the best at meeting some
#' well-defined objective criterion, such as having the largest R2 value or the
#' smallest MSE, Mallow's Cp or AIC. The default metric used for selecting the
#' model is R2 but the user can choose any of the other available metrics.
#'
#' @param model An object of class \code{lm}.
#' @param max_order Maximum subset order.
#' @param include Character or numeric vector; variables to be included in selection process.
#' @param exclude Character or numeric vector; variables to be excluded from selection process.
#' @param metric Metric to select model.
#' @param x An object of class \code{ols_step_best_subset}.
#' @param print_plot logical; if \code{TRUE}, prints the plot else returns a plot object.
#' @param ... Other inputs.
#'
#' @return \code{ols_step_best_subset} returns an object of class \code{"ols_step_best_subset"}.
#' An object of class \code{"ols_step_best_subset"} is a list containing the following:
#'
#' \item{metrics}{selection metrics}
#'
#' @references
#' Kutner, MH, Nachtscheim CJ, Neter J and Li W., 2004, Applied Linear Statistical Models (5th edition).
#' Chicago, IL., McGraw Hill/Irwin.
#'
#' @examples
#' model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
#' ols_step_best_subset(model)
#' ols_step_best_subset(model, metric = "adjr")
#' ols_step_best_subset(model, metric = "cp")
#'
#' # maximum subset
#' model <- lm(mpg ~ disp + hp + drat + wt + qsec, data = mtcars)
#' ols_step_best_subset(model, max_order = 3)
#'
#' # plot
#' model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
#' k <- ols_step_best_subset(model)
#' plot(k)
#'
#' # return only models including `qsec`
#' ols_step_best_subset(model, include = c("qsec"))
#'
#' # exclude `hp` from selection process
#' ols_step_best_subset(model, exclude = c("hp"))
#'
#' @export
#'
ols_step_best_subset <- function(model, ...) UseMethod("ols_step_best_subset")
#' @export
#' @rdname ols_step_best_subset
#'
ols_step_best_subset.default <- function(model, max_order = NULL,
include = NULL, exclude = NULL,
metric = c("rsquare", "adjr", "predrsq",
"cp", "aic", "sbic", "sbc",
"msep", "fpe", "apc", "hsp"),
...) {
check_model(model)
check_npredictors(model, 2)
indterms <- coeff_names(model)
lenterms <- length(indterms)
if (is.character(include)) {
npm <- include %in% indterms
if (!all(npm)) {
stop(paste(paste(include[!npm], collapse = ", "), "not part of the model and hence cannot be forcibly included. Please verify the variable names."), call. = FALSE)
}
}
if (is.character(exclude)) {
npm <- exclude %in% indterms
if (!all(npm)) {
stop(paste(paste(exclude[!npm], collapse = ", "), "not part of the model and hence cannot be forcibly excluded. Please verify the variable names."), call. = FALSE)
}
}
if (is.numeric(include)) {
if (any(include > lenterms)) {
stop(paste0("Index of variable to be included should be between 1 and ", lenterms, "."), call. = FALSE)
} else {
include <- indterms[include]
}
}
if (is.numeric(exclude)) {
if (any(exclude > lenterms)) {
stop(paste0("Index of variable to be excluded should be between 1 and ", lenterms, "."), call. = FALSE)
} else {
exclude <- indterms[exclude]
}
}
nam <- setdiff(coeff_names(model), exclude)
n <- length(nam)
r <- seq_len(n)
combs <- list()
for (i in seq_len(n)) {
combs[[i]] <- combn(n, r[i])
}
if (!is.null(max_order)) {
check_order(n, max_order)
}
if (is.null(max_order)) {
max_order <- n
}
# lc <- length(combs)
lc <- max_order
varnames <- model_colnames(model)
data <- model$model
colas <- unname(unlist(lapply(combs, ncol)))
response <- varnames[1]
predicts <- list()
k <- 1
for (i in seq_len(lc)) {
for (j in seq_len(colas[i])) {
predicts[[k]] <- nam[combs[[i]][, j]]
k <- k + 1
}
}
if(!is.null(include)) {
y <- grep(include, predicts)
predicts <- predicts[y]
}
len_elig <- length(predicts)
mcount <- 0
rsq <- list()
adjr <- list()
cp <- list()
aic <- list()
sbic <- list()
sbc <- list()
mse <- list()
gmsep <- list()
jp <- list()
pc <- list()
sp <- list()
press <- list()
predrsq <- list()
preds <- list()
lpreds <- c()
for (i in seq_len(len_elig)) {
predictors <- predicts[[i]]
lp <- length(predictors)
out <- ols_regress(paste(response, "~", paste(predictors, collapse = " + ")), data = data)
mcount <- mcount + 1
lpreds[mcount] <- lp
rsq[[mcount]] <- out$rsq
adjr[[mcount]] <- out$adjr
cp[[mcount]] <- ols_mallows_cp(out$model, model)
aic[[mcount]] <- ols_aic(out$model)
sbic[[mcount]] <- ols_sbic(out$model, model)
sbc[[mcount]] <- ols_sbc(out$model)
gmsep[[mcount]] <- ols_msep(out$model)
jp[[mcount]] <- ols_fpe(out$model)
pc[[mcount]] <- ols_apc(out$model)
sp[[mcount]] <- ols_hsp(out$model)
predrsq[[mcount]] <- ols_pred_rsq(out$model)
preds[[mcount]] <- paste(predictors, collapse = " ")
}
ui <- data.frame(
n = lpreds,
predictors = unlist(preds),
rsquare = unlist(rsq),
adjr = unlist(adjr),
predrsq = unlist(predrsq),
cp = unlist(cp),
aic = unlist(aic),
sbic = unlist(sbic),
sbc = unlist(sbc),
msep = unlist(gmsep),
fpe = unlist(jp),
apc = unlist(pc),
hsp = unlist(sp),
stringsAsFactors = F
)
metrics <- match.arg(metric)
sorted <- c()
l <- split(ui, ui$n)
if (metrics == "rsquare" || metrics == "adjr" || metrics == "predrsq") {
temp <- lapply(l, function(x) x[order(x[[metrics]], decreasing = TRUE), ][1, ])
} else {
temp <- lapply(l, function(x) x[order(x[[metrics]]), ][1, ])
}
sorted <- do.call(rbind, temp)
mindex <- seq_len(nrow(sorted))
sorted <- cbind(mindex, sorted)
result <- list(metrics = sorted)
class(result) <- c("ols_step_best_subset")
return(result)
}
#' @export
#'
print.ols_step_best_subset <- function(x, ...) {
print_best_subset(x)
}
#' @export
#' @rdname ols_step_best_subset
#'
plot.ols_step_best_subset <- function(x, model = NA, print_plot = TRUE, ...) {
z <- x$metrics
d <- data.frame(mindex = z$mindex, rsquare = z$rsquare, adjr = z$adjr,
cp = z$cp, aic = z$aic, sbic = z$sbic, sbc = z$sbc)
p1 <- best_subset_plot(d, "rsquare")
p2 <- best_subset_plot(d, "adjr", title = "Adj. R-Square")
p3 <- best_subset_plot(d, "cp", title = "C(p)")
p4 <- best_subset_plot(d, "aic", title = "AIC")
p5 <- best_subset_plot(d, "sbic", title = "SBIC")
p6 <- best_subset_plot(d, "sbc", title = "SBC")
myplots <- list(plot_1 = p1, plot_2 = p2, plot_3 = p3,
plot_4 = p4, plot_5 = p5, plot_6 = p6)
if (print_plot) {
marrangeGrob(myplots, nrow = 2, ncol = 2, top = "Best Subset Regression")
} else {
return(myplots)
}
}
#' Best subset plot
#'
#' Generate plots for best subset regression.
#'
#' @importFrom ggplot2 geom_line theme element_blank
#'
#' @param d A data.frame.
#' @param title Plot title.
#'
#' @noRd
#'
best_subset_plot <- function(d, var, title = "R-Square") {
d1 <- d[, c("mindex", var)]
colnames(d1) <- c("a", "b")
ggplot(d1, aes(x = a, y = b)) +
geom_line(color = "blue") +
geom_point(color = "blue", shape = 1, size = 2) +
xlab("") +
ylab("") +
ggtitle(title) +
theme(axis.ticks = element_blank())
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.