Code
gt_tbl$`_boxhead`$column_label
Output
[[1]]
[1] "idx"
[[2]]
[1] "Time Domain<br/>$\\small{f\\left( t \\right) = {\\mathcal{L}^{\\,\\, - 1}}\\left\\{ {F\\left( s \\right)} \\right\\}}$"
attr(,"class")
[1] "from_markdown"
[[3]]
[1] "$s$ Domain<br/>$\\small{F\\left( s \\right) = \\mathcal{L}\\left\\{ {f\\left( t \\right)} \\right\\}}$"
attr(,"class")
[1] "from_markdown"
Code
render_as_html(gt_tbl)
Output
[1] "<table class=\"gt_table\" style=\"table-layout:fixed;width:0px;\" data-quarto-disable-processing=\"false\" data-quarto-bootstrap=\"false\">\n <colgroup>\n <col style=\"width:50px;\"/>\n <col style=\"width:300px;\"/>\n <col style=\"width:600px;\"/>\n </colgroup>\n <thead>\n <tr class=\"gt_heading\">\n <td colspan=\"3\" class=\"gt_heading gt_title gt_font_normal\" style><span class='gt_from_md'>A Table of Laplace Transforms — <link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mstyle mathsize=\"0.9em\"><mi mathvariant=\"script\">L</mi></mstyle></mrow><annotation encoding=\"application/x-tex\">\\small{{\\mathcal{L}}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:0.615em;\"></span><span class=\"mord sizing reset-size6 size5\"><span class=\"mord\"><span class=\"mord mathcal\">L</span></span></span></span></span></span></span></td>\n </tr>\n <tr class=\"gt_heading\">\n <td colspan=\"3\" class=\"gt_heading gt_subtitle gt_font_normal gt_bottom_border\" style><span class='gt_from_md'>The most commonly used Laplace transforms and formulas.<br/><br/></span></td>\n </tr>\n <tr class=\"gt_col_headings\">\n <th class=\"gt_col_heading gt_columns_bottom_border gt_left\" rowspan=\"1\" colspan=\"1\" scope=\"col\" id=\"a::stub\"></th>\n <th class=\"gt_col_heading gt_columns_bottom_border gt_center\" rowspan=\"1\" colspan=\"1\" scope=\"col\" id=\"l_time_domain\"><span class='gt_from_md'>Time Domain<br/><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mstyle mathsize=\"0.9em\"><mrow><mi>f</mi><mrow><mo fence=\"true\">(</mo><mi>t</mi><mo fence=\"true\">)</mo></mrow><mo>=</mo><msup><mi mathvariant=\"script\">L</mi><mrow><mtext> </mtext><mtext> </mtext><mo>−</mo><mn>1</mn></mrow></msup><mrow><mo fence=\"true\">{</mo><mrow><mi>F</mi><mrow><mo fence=\"true\">(</mo><mi>s</mi><mo fence=\"true\">)</mo></mrow></mrow><mo fence=\"true\">}</mo></mrow></mrow></mstyle></mrow><annotation encoding=\"application/x-tex\">\\small{f\\left( t \\right) = {\\mathcal{L}^{\\,\\, - 1}}\\left\\{ {F\\left( s \\right)} \\right\\}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.2725em;\"></span><span class=\"mord sizing reset-size6 size5\"><span class=\"mord mathnormal\" style=\"margin-right:0.10764em;\">f</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen sizing reset-size5 size6 delimcenter\" style=\"top:0.025em;\">(</span><span class=\"mord mathnormal\">t</span><span class=\"mclose sizing reset-size5 size6 delimcenter\" style=\"top:0.025em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.2778em;\"></span><span class=\"mrel\">=</span><span class=\"mspace\" style=\"margin-right:0.2778em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathcal\">L</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7926em;\"><span style=\"top:-2.963em;margin-right:0.0556em;\"><span class=\"pstrut\" style=\"height:2.6em;\"></span><span class=\"sizing reset-size5 size2 mtight\"><span class=\"mord mtight\"><span class=\"mspace mtight\" style=\"margin-right:0.2453em;\"></span><span class=\"mspace mtight\" style=\"margin-right:0.2453em;\"></span><span class=\"mord mtight\">−</span><span class=\"mord mtight\">1</span></span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen sizing reset-size5 size6 delimcenter\" style=\"top:0.025em;\">{</span><span class=\"mord\"><span class=\"mord mathnormal\" style=\"margin-right:0.13889em;\">F</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen sizing reset-size5 size6 delimcenter\" style=\"top:0.025em;\">(</span><span class=\"mord mathnormal\">s</span><span class=\"mclose sizing reset-size5 size6 delimcenter\" style=\"top:0.025em;\">)</span></span></span><span class=\"mclose sizing reset-size5 size6 delimcenter\" style=\"top:0.025em;\">}</span></span></span></span></span></span></span></th>\n <th class=\"gt_col_heading gt_columns_bottom_border gt_center\" rowspan=\"1\" colspan=\"1\" scope=\"col\" id=\"l_laplace_s_domain\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi>s</mi></mrow><annotation encoding=\"application/x-tex\">s</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:0.4306em;\"></span><span class=\"mord mathnormal\">s</span></span></span></span> Domain<br/><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mstyle mathsize=\"0.9em\"><mrow><mi>F</mi><mrow><mo fence=\"true\">(</mo><mi>s</mi><mo fence=\"true\">)</mo></mrow><mo>=</mo><mi mathvariant=\"script\">L</mi><mrow><mo fence=\"true\">{</mo><mrow><mi>f</mi><mrow><mo fence=\"true\">(</mo><mi>t</mi><mo fence=\"true\">)</mo></mrow></mrow><mo fence=\"true\">}</mo></mrow></mrow></mstyle></mrow><annotation encoding=\"application/x-tex\">\\small{F\\left( s \\right) = \\mathcal{L}\\left\\{ {f\\left( t \\right)} \\right\\}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.2725em;\"></span><span class=\"mord sizing reset-size6 size5\"><span class=\"mord mathnormal\" style=\"margin-right:0.13889em;\">F</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen sizing reset-size5 size6 delimcenter\" style=\"top:0.025em;\">(</span><span class=\"mord mathnormal\">s</span><span class=\"mclose sizing reset-size5 size6 delimcenter\" style=\"top:0.025em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.2778em;\"></span><span class=\"mrel\">=</span><span class=\"mspace\" style=\"margin-right:0.2778em;\"></span><span class=\"mord mathcal\">L</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen sizing reset-size5 size6 delimcenter\" style=\"top:0.025em;\">{</span><span class=\"mord\"><span class=\"mord mathnormal\" style=\"margin-right:0.10764em;\">f</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen sizing reset-size5 size6 delimcenter\" style=\"top:0.025em;\">(</span><span class=\"mord mathnormal\">t</span><span class=\"mclose sizing reset-size5 size6 delimcenter\" style=\"top:0.025em;\">)</span></span></span><span class=\"mclose sizing reset-size5 size6 delimcenter\" style=\"top:0.025em;\">}</span></span></span></span></span></span></span></th>\n </tr>\n </thead>\n <tbody class=\"gt_table_body\">\n <tr><th id=\"stub_1_1\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>1</span></th>\n<td headers=\"stub_1_1 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mn>1</mn></mrow><annotation encoding=\"application/x-tex\">1</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:0.6444em;\"></span><span class=\"mord\">1</span></span></span></span></span></td>\n<td headers=\"stub_1_1 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex-display\"><span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><semantics><mrow><mfrac><mn>1</mn><mi>s</mi></mfrac></mrow><annotation encoding=\"application/x-tex\">\\frac{1}{s}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:2.0074em;vertical-align:-0.686em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.3214em;\"><span style=\"top:-2.314em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord mathnormal\">s</span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.677em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\">1</span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.686em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_2\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>2</span></th>\n<td headers=\"stub_1_2 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup><mi mathvariant=\"bold\">e</mi><mrow><mi>a</mi><mtext> </mtext><mi>t</mi></mrow></msup></mrow><annotation encoding=\"application/x-tex\">{{\\bf{e}}^{a\\,t}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:0.7936em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathbf\">e</span></span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7936em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mathnormal mtight\">a</span><span class=\"mspace mtight\" style=\"margin-right:0.1952em;\"></span><span class=\"mord mathnormal mtight\">t</span></span></span></span></span></span></span></span></span></span></span></span></span></span></td>\n<td headers=\"stub_1_2 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex-display\"><span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><semantics><mrow><mfrac><mn>1</mn><mrow><mi>s</mi><mo>−</mo><mi>a</mi></mrow></mfrac></mrow><annotation encoding=\"application/x-tex\">\\frac{1}{{s - a}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:2.0908em;vertical-align:-0.7693em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.3214em;\"><span style=\"top:-2.314em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord mathnormal\">a</span></span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.677em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\">1</span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7693em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_3\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>3</span></th>\n<td headers=\"stub_1_3 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup><mi>t</mi><mi>n</mi></msup><mo separator=\"true\">,</mo><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mi>n</mi><mo>=</mo><mn>1</mn><mo separator=\"true\">,</mo><mn>2</mn><mo separator=\"true\">,</mo><mn>3</mn><mo separator=\"true\">,</mo><mo>…</mo></mrow><annotation encoding=\"application/x-tex\">{t^n},\\,\\,\\,\\,\\,n = 1,2,3, \\ldots</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:0.8588em;vertical-align:-0.1944em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">t</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.6644em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mathnormal mtight\">n</span></span></span></span></span></span></span></span></span><span class=\"mpunct\">,</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord mathnormal\">n</span><span class=\"mspace\" style=\"margin-right:0.2778em;\"></span><span class=\"mrel\">=</span><span class=\"mspace\" style=\"margin-right:0.2778em;\"></span></span><span class=\"base\"><span class=\"strut\" style=\"height:0.8389em;vertical-align:-0.1944em;\"></span><span class=\"mord\">1</span><span class=\"mpunct\">,</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord\">2</span><span class=\"mpunct\">,</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord\">3</span><span class=\"mpunct\">,</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\">…</span></span></span></span></span></td>\n<td headers=\"stub_1_3 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex-display\"><span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><semantics><mrow><mfrac><mrow><mi>n</mi><mo stretchy=\"false\">!</mo></mrow><msup><mi>s</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></mfrac></mrow><annotation encoding=\"application/x-tex\">\\frac{{n!}}{{{s^{n + 1}}}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:2.0574em;vertical-align:-0.686em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.3714em;\"><span style=\"top:-2.314em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mathnormal mtight\">n</span><span class=\"mbin mtight\">+</span><span class=\"mord mtight\">1</span></span></span></span></span></span></span></span></span></span></span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.677em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">n</span><span class=\"mclose\">!</span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.686em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_4\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>4</span></th>\n<td headers=\"stub_1_4 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup><mi>t</mi><mi>p</mi></msup><mo separator=\"true\">,</mo><mi>p</mi><mo>></mo><mo>−</mo><mn>1</mn></mrow><annotation encoding=\"application/x-tex\">{t^p}, p > -1</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:0.8588em;vertical-align:-0.1944em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">t</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.6644em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mathnormal mtight\">p</span></span></span></span></span></span></span></span></span><span class=\"mpunct\">,</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord mathnormal\">p</span><span class=\"mspace\" style=\"margin-right:0.2778em;\"></span><span class=\"mrel\">></span><span class=\"mspace\" style=\"margin-right:0.2778em;\"></span></span><span class=\"base\"><span class=\"strut\" style=\"height:0.7278em;vertical-align:-0.0833em;\"></span><span class=\"mord\">−</span><span class=\"mord\">1</span></span></span></span></span></td>\n<td headers=\"stub_1_4 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex-display\"><span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><semantics><mrow><mfrac><mrow><mi mathvariant=\"normal\">Γ</mi><mrow><mo fence=\"true\">(</mo><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow><mo fence=\"true\">)</mo></mrow></mrow><msup><mi>s</mi><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msup></mfrac></mrow><annotation encoding=\"application/x-tex\">\\frac{{\\Gamma \\left( {p + 1} \\right)}}{{{s^{p + 1}}}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:2.113em;vertical-align:-0.686em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.427em;\"><span style=\"top:-2.314em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mathnormal mtight\">p</span><span class=\"mbin mtight\">+</span><span class=\"mord mtight\">1</span></span></span></span></span></span></span></span></span></span></span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.677em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\">Γ</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">p</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">+</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord\">1</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.686em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_5\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>5</span></th>\n<td headers=\"stub_1_5 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msqrt><mi>t</mi></msqrt></mrow><annotation encoding=\"application/x-tex\">\\sqrt t</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1.04em;vertical-align:-0.1475em;\"></span><span class=\"mord sqrt\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.8925em;\"><span class=\"svg-align\" style=\"top:-3em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord mathnormal\" style=\"padding-left:0.833em;\">t</span></span><span style=\"top:-2.8525em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"hide-tail\" style=\"min-width:0.853em;height:1.08em;\"><svg xmlns=\"http://www.w3.org/2000/svg\" width='400em' height='1.08em' viewBox='0 0 400000 1080' preserveAspectRatio='xMinYMin slice'><path d='M95,702\nc-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14\nc0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54\nc44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10\ns173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429\nc69,-144,104.5,-217.7,106.5,-221\nl0 -0\nc5.3,-9.3,12,-14,20,-14\nH400000v40H845.2724\ns-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7\nc-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z\nM834 80h400000v40h-400000z'/></svg></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.1475em;\"><span></span></span></span></span></span></span></span></span></span></td>\n<td headers=\"stub_1_5 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex-display\"><span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><semantics><mrow><mfrac><msqrt><mi>π</mi></msqrt><mrow><mn>2</mn><msup><mi>s</mi><mfrac><mn>3</mn><mn>2</mn></mfrac></msup></mrow></mfrac></mrow><annotation encoding=\"application/x-tex\">\\frac{{\\sqrt \\pi }}{{2{s^{\\frac{3}{2}}}}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:2.3068em;vertical-align:-0.8296em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.4773em;\"><span style=\"top:-2.1704em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\">2</span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.9396em;\"><span style=\"top:-3.3486em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mopen nulldelimiter sizing reset-size3 size6\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.8443em;\"><span style=\"top:-2.656em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"sizing reset-size3 size1 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\">2</span></span></span></span><span style=\"top:-3.2255em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line mtight\" style=\"border-bottom-width:0.049em;\"></span></span><span style=\"top:-3.384em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"sizing reset-size3 size1 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\">3</span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.344em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter sizing reset-size3 size6\"></span></span></span></span></span></span></span></span></span></span></span></span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.677em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord sqrt\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.8003em;\"><span class=\"svg-align\" style=\"top:-3em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord mathnormal\" style=\"margin-right:0.03588em;padding-left:0.833em;\">π</span></span><span style=\"top:-2.7603em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"hide-tail\" style=\"min-width:0.853em;height:1.08em;\"><svg xmlns=\"http://www.w3.org/2000/svg\" width='400em' height='1.08em' viewBox='0 0 400000 1080' preserveAspectRatio='xMinYMin slice'><path d='M95,702\nc-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14\nc0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54\nc44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10\ns173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429\nc69,-144,104.5,-217.7,106.5,-221\nl0 -0\nc5.3,-9.3,12,-14,20,-14\nH400000v40H845.2724\ns-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7\nc-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z\nM834 80h400000v40h-400000z'/></svg></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.2397em;\"><span></span></span></span></span></span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.8296em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_6\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>6</span></th>\n<td headers=\"stub_1_6 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup><mi>t</mi><mrow><mi>n</mi><mo>−</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup><mo separator=\"true\">,</mo><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mi>n</mi><mo>=</mo><mn>1</mn><mo separator=\"true\">,</mo><mn>2</mn><mo separator=\"true\">,</mo><mn>3</mn><mo separator=\"true\">,</mo><mo>…</mo></mrow><annotation encoding=\"application/x-tex\">{t^{n - \\frac{1}{2}}},\\,\\,\\,\\,\\,n = 1,2,3, \\ldots</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1.1485em;vertical-align:-0.1944em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">t</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.954em;\"><span style=\"top:-3.363em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mathnormal mtight\">n</span><span class=\"mbin mtight\">−</span><span class=\"mord mtight\"><span class=\"mopen nulldelimiter sizing reset-size3 size6\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.8443em;\"><span style=\"top:-2.656em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"sizing reset-size3 size1 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\">2</span></span></span></span><span style=\"top:-3.2255em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line mtight\" style=\"border-bottom-width:0.049em;\"></span></span><span style=\"top:-3.384em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"sizing reset-size3 size1 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\">1</span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.344em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter sizing reset-size3 size6\"></span></span></span></span></span></span></span></span></span></span></span><span class=\"mpunct\">,</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord mathnormal\">n</span><span class=\"mspace\" style=\"margin-right:0.2778em;\"></span><span class=\"mrel\">=</span><span class=\"mspace\" style=\"margin-right:0.2778em;\"></span></span><span class=\"base\"><span class=\"strut\" style=\"height:0.8389em;vertical-align:-0.1944em;\"></span><span class=\"mord\">1</span><span class=\"mpunct\">,</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord\">2</span><span class=\"mpunct\">,</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord\">3</span><span class=\"mpunct\">,</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\">…</span></span></span></span></span></td>\n<td headers=\"stub_1_6 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex-display\"><span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><semantics><mrow><mfrac><mrow><mn>1</mn><mo>⋅</mo><mn>3</mn><mo>⋅</mo><mn>5</mn><mo>⋯</mo><mrow><mo fence=\"true\">(</mo><mrow><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mo fence=\"true\">)</mo></mrow><msqrt><mi>π</mi></msqrt></mrow><mrow><msup><mn>2</mn><mi>n</mi></msup><msup><mi>s</mi><mrow><mi>n</mi><mo>+</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow></msup></mrow></mfrac></mrow><annotation encoding=\"application/x-tex\">\\frac{{1 \\cdot 3 \\cdot 5 \\cdots \\left( {2n - 1} \\right)\\sqrt \\pi }}{{{2^n}{s^{n + \\frac{1}{2}}}}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:2.3069em;vertical-align:-0.8296em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.4773em;\"><span style=\"top:-2.1704em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\">2</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.5904em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mathnormal mtight\">n</span></span></span></span></span></span></span></span></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.9396em;\"><span style=\"top:-3.3486em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mathnormal mtight\">n</span><span class=\"mbin mtight\">+</span><span class=\"mord mtight\"><span class=\"mopen nulldelimiter sizing reset-size3 size6\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.8443em;\"><span style=\"top:-2.656em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"sizing reset-size3 size1 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\">2</span></span></span></span><span style=\"top:-3.2255em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line mtight\" style=\"border-bottom-width:0.049em;\"></span></span><span style=\"top:-3.384em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"sizing reset-size3 size1 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\">1</span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.344em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter sizing reset-size3 size6\"></span></span></span></span></span></span></span></span></span></span></span></span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.677em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\">1</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">⋅</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord\">3</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">⋅</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord\">5</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\">⋯</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord\">2</span><span class=\"mord mathnormal\">n</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord\">1</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord sqrt\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.8003em;\"><span class=\"svg-align\" style=\"top:-3em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord mathnormal\" style=\"margin-right:0.03588em;padding-left:0.833em;\">π</span></span><span style=\"top:-2.7603em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"hide-tail\" style=\"min-width:0.853em;height:1.08em;\"><svg xmlns=\"http://www.w3.org/2000/svg\" width='400em' height='1.08em' viewBox='0 0 400000 1080' preserveAspectRatio='xMinYMin slice'><path d='M95,702\nc-2.7,0,-7.17,-2.7,-13.5,-8c-5.8,-5.3,-9.5,-10,-9.5,-14\nc0,-2,0.3,-3.3,1,-4c1.3,-2.7,23.83,-20.7,67.5,-54\nc44.2,-33.3,65.8,-50.3,66.5,-51c1.3,-1.3,3,-2,5,-2c4.7,0,8.7,3.3,12,10\ns173,378,173,378c0.7,0,35.3,-71,104,-213c68.7,-142,137.5,-285,206.5,-429\nc69,-144,104.5,-217.7,106.5,-221\nl0 -0\nc5.3,-9.3,12,-14,20,-14\nH400000v40H845.2724\ns-225.272,467,-225.272,467s-235,486,-235,486c-2.7,4.7,-9,7,-19,7\nc-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z\nM834 80h400000v40h-400000z'/></svg></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.2397em;\"><span></span></span></span></span></span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.8296em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_7\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>7</span></th>\n<td headers=\"stub_1_7 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi>sin</mi><mo></mo><mrow><mo fence=\"true\">(</mo><mrow><mi>a</mi><mi>t</mi></mrow><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">\\sin \\left( {at} \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mop\">sin</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"mord mathnormal\">t</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td>\n<td headers=\"stub_1_7 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex-display\"><span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><semantics><mrow><mfrac><mi>a</mi><mrow><msup><mi>s</mi><mn>2</mn></msup><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup></mrow></mfrac></mrow><annotation encoding=\"application/x-tex\">\\frac{a}{{{s^2} + {a^2}}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1.8769em;vertical-align:-0.7693em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.1076em;\"><span style=\"top:-2.314em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">+</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.677em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord mathnormal\">a</span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7693em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_8\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>8</span></th>\n<td headers=\"stub_1_8 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi>cos</mi><mo></mo><mrow><mo fence=\"true\">(</mo><mrow><mi>a</mi><mi>t</mi></mrow><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">\\cos \\left( {at} \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mop\">cos</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"mord mathnormal\">t</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td>\n<td headers=\"stub_1_8 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex-display\"><span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><semantics><mrow><mfrac><mi>s</mi><mrow><msup><mi>s</mi><mn>2</mn></msup><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup></mrow></mfrac></mrow><annotation encoding=\"application/x-tex\">\\frac{s}{{{s^2} + {a^2}}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1.8769em;vertical-align:-0.7693em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.1076em;\"><span style=\"top:-2.314em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">+</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.677em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord mathnormal\">s</span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7693em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_9\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>9</span></th>\n<td headers=\"stub_1_9 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi>t</mi><mi>sin</mi><mo></mo><mrow><mo fence=\"true\">(</mo><mrow><mi>a</mi><mi>t</mi></mrow><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">t\\sin \\left( {at} \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mord mathnormal\">t</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mop\">sin</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"mord mathnormal\">t</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td>\n<td headers=\"stub_1_9 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex-display\"><span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><semantics><mrow><mfrac><mrow><mn>2</mn><mi>a</mi><mi>s</mi></mrow><msup><mrow><mo fence=\"true\">(</mo><mrow><msup><mi>s</mi><mn>2</mn></msup><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup></mrow><mo fence=\"true\">)</mo></mrow><mn>2</mn></msup></mfrac></mrow><annotation encoding=\"application/x-tex\">\\frac{{2as}}{{{{\\left( {{s^2} + {a^2}} \\right)}^2}}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:2.4154em;vertical-align:-1.094em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.3214em;\"><span style=\"top:-2.156em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">+</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.954em;\"><span style=\"top:-3.2029em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.677em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\">2</span><span class=\"mord mathnormal\">a</span><span class=\"mord mathnormal\">s</span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.094em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_10\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>10</span></th>\n<td headers=\"stub_1_10 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi>t</mi><mi>cos</mi><mo></mo><mrow><mo fence=\"true\">(</mo><mrow><mi>a</mi><mi>t</mi></mrow><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">t\\cos \\left( {at} \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mord mathnormal\">t</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mop\">cos</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"mord mathnormal\">t</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td>\n<td headers=\"stub_1_10 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex-display\"><span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><semantics><mrow><mfrac><mrow><msup><mi>s</mi><mn>2</mn></msup><mo>−</mo><msup><mi>a</mi><mn>2</mn></msup></mrow><msup><mrow><mo fence=\"true\">(</mo><mrow><msup><mi>s</mi><mn>2</mn></msup><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup></mrow><mo fence=\"true\">)</mo></mrow><mn>2</mn></msup></mfrac></mrow><annotation encoding=\"application/x-tex\">\\frac{{{s^2} - {a^2}}}{{{{\\left( {{s^2} + {a^2}} \\right)}^2}}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:2.5851em;vertical-align:-1.094em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.4911em;\"><span style=\"top:-2.156em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">+</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.954em;\"><span style=\"top:-3.2029em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.677em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.8141em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.8141em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.094em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_11\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>11</span></th>\n<td headers=\"stub_1_11 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi>sin</mi><mo></mo><mrow><mo fence=\"true\">(</mo><mrow><mi>a</mi><mi>t</mi></mrow><mo fence=\"true\">)</mo></mrow><mo>−</mo><mi>a</mi><mi>t</mi><mi>cos</mi><mo></mo><mrow><mo fence=\"true\">(</mo><mrow><mi>a</mi><mi>t</mi></mrow><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">\\sin \\left( {at} \\right) - at\\cos \\left( {at} \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mop\">sin</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"mord mathnormal\">t</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span></span><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mord mathnormal\">a</span><span class=\"mord mathnormal\">t</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mop\">cos</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"mord mathnormal\">t</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td>\n<td headers=\"stub_1_11 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex-display\"><span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><semantics><mrow><mfrac><mrow><mn>2</mn><msup><mi>a</mi><mn>3</mn></msup></mrow><msup><mrow><mo fence=\"true\">(</mo><mrow><msup><mi>s</mi><mn>2</mn></msup><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup></mrow><mo fence=\"true\">)</mo></mrow><mn>2</mn></msup></mfrac></mrow><annotation encoding=\"application/x-tex\">\\frac{{2{a^3}}}{{{{\\left( {{s^2} + {a^2}} \\right)}^2}}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:2.5851em;vertical-align:-1.094em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.4911em;\"><span style=\"top:-2.156em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">+</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.954em;\"><span style=\"top:-3.2029em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.677em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\">2</span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.8141em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">3</span></span></span></span></span></span></span></span></span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.094em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_12\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>12</span></th>\n<td headers=\"stub_1_12 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi>sin</mi><mo></mo><mrow><mo fence=\"true\">(</mo><mrow><mi>a</mi><mi>t</mi></mrow><mo fence=\"true\">)</mo></mrow><mo>+</mo><mi>a</mi><mi>t</mi><mi>cos</mi><mo></mo><mrow><mo fence=\"true\">(</mo><mrow><mi>a</mi><mi>t</mi></mrow><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">\\sin \\left( {at} \\right) + at\\cos \\left( {at} \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mop\">sin</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"mord mathnormal\">t</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">+</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span></span><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mord mathnormal\">a</span><span class=\"mord mathnormal\">t</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mop\">cos</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"mord mathnormal\">t</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td>\n<td headers=\"stub_1_12 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex-display\"><span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><semantics><mrow><mfrac><mrow><mn>2</mn><mi>a</mi><msup><mi>s</mi><mn>2</mn></msup></mrow><msup><mrow><mo fence=\"true\">(</mo><mrow><msup><mi>s</mi><mn>2</mn></msup><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup></mrow><mo fence=\"true\">)</mo></mrow><mn>2</mn></msup></mfrac></mrow><annotation encoding=\"application/x-tex\">\\frac{{2a{s^2}}}{{{{\\left( {{s^2} + {a^2}} \\right)}^2}}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:2.5851em;vertical-align:-1.094em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.4911em;\"><span style=\"top:-2.156em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">+</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.954em;\"><span style=\"top:-3.2029em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.677em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\">2</span><span class=\"mord mathnormal\">a</span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.8141em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.094em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_13\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>13</span></th>\n<td headers=\"stub_1_13 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi>cos</mi><mo></mo><mrow><mo fence=\"true\">(</mo><mrow><mi>a</mi><mi>t</mi></mrow><mo fence=\"true\">)</mo></mrow><mo>−</mo><mi>a</mi><mi>t</mi><mi>sin</mi><mo></mo><mrow><mo fence=\"true\">(</mo><mrow><mi>a</mi><mi>t</mi></mrow><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">\\cos \\left( {at} \\right) - at\\sin \\left( {at} \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mop\">cos</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"mord mathnormal\">t</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span></span><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mord mathnormal\">a</span><span class=\"mord mathnormal\">t</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mop\">sin</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"mord mathnormal\">t</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td>\n<td headers=\"stub_1_13 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex-display\"><span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><semantics><mrow><mfrac><mrow><mi>s</mi><mrow><mo fence=\"true\">(</mo><mrow><msup><mi>s</mi><mn>2</mn></msup><mo>−</mo><msup><mi>a</mi><mn>2</mn></msup></mrow><mo fence=\"true\">)</mo></mrow></mrow><msup><mrow><mo fence=\"true\">(</mo><mrow><msup><mi>s</mi><mn>2</mn></msup><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup></mrow><mo fence=\"true\">)</mo></mrow><mn>2</mn></msup></mfrac></mrow><annotation encoding=\"application/x-tex\">\\frac{{s\\left( {{s^2} - {a^2}} \\right)}}{{{{\\left( {{s^2} + {a^2}} \\right)}^2}}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:2.684em;vertical-align:-1.094em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.59em;\"><span style=\"top:-2.156em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">+</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.954em;\"><span style=\"top:-3.2029em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.74em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\"><span class=\"delimsizing size1\">(</span></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.8141em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.8141em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span><span class=\"mclose delimcenter\" style=\"top:0em;\"><span class=\"delimsizing size1\">)</span></span></span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.094em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_14\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>14</span></th>\n<td headers=\"stub_1_14 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi>cos</mi><mo></mo><mrow><mo fence=\"true\">(</mo><mrow><mi>a</mi><mi>t</mi></mrow><mo fence=\"true\">)</mo></mrow><mo>+</mo><mi>a</mi><mi>t</mi><mi>sin</mi><mo></mo><mrow><mo fence=\"true\">(</mo><mrow><mi>a</mi><mi>t</mi></mrow><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">\\cos \\left( {at} \\right) + at\\sin \\left( {at} \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mop\">cos</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"mord mathnormal\">t</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">+</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span></span><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mord mathnormal\">a</span><span class=\"mord mathnormal\">t</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mop\">sin</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"mord mathnormal\">t</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td>\n<td headers=\"stub_1_14 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex-display\"><span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><semantics><mrow><mfrac><mrow><mi>s</mi><mrow><mo fence=\"true\">(</mo><mrow><msup><mi>s</mi><mn>2</mn></msup><mo>+</mo><mn>3</mn><msup><mi>a</mi><mn>2</mn></msup></mrow><mo fence=\"true\">)</mo></mrow></mrow><msup><mrow><mo fence=\"true\">(</mo><mrow><msup><mi>s</mi><mn>2</mn></msup><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup></mrow><mo fence=\"true\">)</mo></mrow><mn>2</mn></msup></mfrac></mrow><annotation encoding=\"application/x-tex\">\\frac{{s\\left( {{s^2} + 3{a^2}} \\right)}}{{{{\\left( {{s^2} + {a^2}} \\right)}^2}}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:2.684em;vertical-align:-1.094em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.59em;\"><span style=\"top:-2.156em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">+</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.954em;\"><span style=\"top:-3.2029em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.74em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\"><span class=\"delimsizing size1\">(</span></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.8141em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">+</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord\">3</span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.8141em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span><span class=\"mclose delimcenter\" style=\"top:0em;\"><span class=\"delimsizing size1\">)</span></span></span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.094em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_15\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>15</span></th>\n<td headers=\"stub_1_15 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi>sin</mi><mo></mo><mrow><mo fence=\"true\">(</mo><mrow><mi>a</mi><mi>t</mi><mo>+</mo><mi>b</mi></mrow><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">\\sin \\left( {at + b} \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mop\">sin</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"mord mathnormal\">t</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">+</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord mathnormal\">b</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td>\n<td headers=\"stub_1_15 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex-display\"><span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><semantics><mrow><mfrac><mrow><mi>s</mi><mi>sin</mi><mo></mo><mrow><mo fence=\"true\">(</mo><mi>b</mi><mo fence=\"true\">)</mo></mrow><mo>+</mo><mi>a</mi><mi>cos</mi><mo></mo><mrow><mo fence=\"true\">(</mo><mi>b</mi><mo fence=\"true\">)</mo></mrow></mrow><mrow><msup><mi>s</mi><mn>2</mn></msup><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup></mrow></mfrac></mrow><annotation encoding=\"application/x-tex\">\\frac{{s\\sin \\left( b \\right) + a\\cos \\left( b \\right)}}{{{s^2} + {a^2}}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:2.1963em;vertical-align:-0.7693em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.427em;\"><span style=\"top:-2.314em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">+</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.677em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mop\">sin</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">b</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">+</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord mathnormal\">a</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mop\">cos</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">b</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7693em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_16\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>16</span></th>\n<td headers=\"stub_1_16 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi>cos</mi><mo></mo><mrow><mo fence=\"true\">(</mo><mrow><mi>a</mi><mi>t</mi><mo>+</mo><mi>b</mi></mrow><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">\\cos \\left( {at + b} \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mop\">cos</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"mord mathnormal\">t</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">+</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord mathnormal\">b</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td>\n<td headers=\"stub_1_16 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex-display\"><span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><semantics><mrow><mfrac><mrow><mi>s</mi><mi>cos</mi><mo></mo><mrow><mo fence=\"true\">(</mo><mi>b</mi><mo fence=\"true\">)</mo></mrow><mo>−</mo><mi>a</mi><mi>sin</mi><mo></mo><mrow><mo fence=\"true\">(</mo><mi>b</mi><mo fence=\"true\">)</mo></mrow></mrow><mrow><msup><mi>s</mi><mn>2</mn></msup><mo>+</mo><msup><mi>a</mi><mn>2</mn></msup></mrow></mfrac></mrow><annotation encoding=\"application/x-tex\">\\frac{{s\\cos \\left( b \\right) - a\\sin \\left( b \\right)}}{{{s^2} + {a^2}}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:2.1963em;vertical-align:-0.7693em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.427em;\"><span style=\"top:-2.314em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">+</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.677em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mop\">cos</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">b</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord mathnormal\">a</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mop\">sin</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">b</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7693em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_17\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>17</span></th>\n<td headers=\"stub_1_17 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi>sinh</mi><mo></mo><mrow><mo fence=\"true\">(</mo><mrow><mi>a</mi><mi>t</mi></mrow><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">\\sinh \\left( {at} \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mop\">sinh</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"mord mathnormal\">t</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td>\n<td headers=\"stub_1_17 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex-display\"><span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><semantics><mrow><mfrac><mi>a</mi><mrow><msup><mi>s</mi><mn>2</mn></msup><mo>−</mo><msup><mi>a</mi><mn>2</mn></msup></mrow></mfrac></mrow><annotation encoding=\"application/x-tex\">\\frac{a}{{{s^2} - {a^2}}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1.8769em;vertical-align:-0.7693em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.1076em;\"><span style=\"top:-2.314em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.677em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord mathnormal\">a</span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7693em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_18\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>18</span></th>\n<td headers=\"stub_1_18 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi>cosh</mi><mo></mo><mrow><mo fence=\"true\">(</mo><mrow><mi>a</mi><mi>t</mi></mrow><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">\\cosh \\left( {at} \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mop\">cosh</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"mord mathnormal\">t</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td>\n<td headers=\"stub_1_18 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex-display\"><span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><semantics><mrow><mfrac><mi>s</mi><mrow><msup><mi>s</mi><mn>2</mn></msup><mo>−</mo><msup><mi>a</mi><mn>2</mn></msup></mrow></mfrac></mrow><annotation encoding=\"application/x-tex\">\\frac{s}{{{s^2} - {a^2}}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1.8769em;vertical-align:-0.7693em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.1076em;\"><span style=\"top:-2.314em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">a</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.677em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord mathnormal\">s</span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7693em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_19\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>19</span></th>\n<td headers=\"stub_1_19 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup><mi mathvariant=\"bold\">e</mi><mrow><mi>a</mi><mi>t</mi></mrow></msup><mi>sin</mi><mo></mo><mrow><mo fence=\"true\">(</mo><mrow><mi>b</mi><mi>t</mi></mrow><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">{{\\bf{e}}^{at}}\\sin \\left( {bt} \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1.0436em;vertical-align:-0.25em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathbf\">e</span></span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7936em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mathnormal mtight\">a</span><span class=\"mord mathnormal mtight\">t</span></span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mop\">sin</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">b</span><span class=\"mord mathnormal\">t</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td>\n<td headers=\"stub_1_19 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex-display\"><span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><semantics><mrow><mfrac><mi>b</mi><mrow><msup><mrow><mo fence=\"true\">(</mo><mrow><mi>s</mi><mo>−</mo><mi>a</mi></mrow><mo fence=\"true\">)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfrac></mrow><annotation encoding=\"application/x-tex\">\\frac{b}{{{{\\left( {s - a} \\right)}^2} + {b^2}}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:2.4654em;vertical-align:-1.094em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.3714em;\"><span style=\"top:-2.156em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord mathnormal\">a</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.954em;\"><span style=\"top:-3.2029em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">+</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">b</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.677em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord mathnormal\">b</span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.094em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_20\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>20</span></th>\n<td headers=\"stub_1_20 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup><mi mathvariant=\"bold\">e</mi><mrow><mi>a</mi><mi>t</mi></mrow></msup><mi>cos</mi><mo></mo><mrow><mo fence=\"true\">(</mo><mrow><mi>b</mi><mi>t</mi></mrow><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">{{\\bf{e}}^{at}}\\cos \\left( {bt} \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1.0436em;vertical-align:-0.25em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathbf\">e</span></span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7936em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mathnormal mtight\">a</span><span class=\"mord mathnormal mtight\">t</span></span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mop\">cos</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">b</span><span class=\"mord mathnormal\">t</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td>\n<td headers=\"stub_1_20 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex-display\"><span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><semantics><mrow><mfrac><mrow><mi>s</mi><mo>−</mo><mi>a</mi></mrow><mrow><msup><mrow><mo fence=\"true\">(</mo><mrow><mi>s</mi><mo>−</mo><mi>a</mi></mrow><mo fence=\"true\">)</mo></mrow><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfrac></mrow><annotation encoding=\"application/x-tex\">\\frac{{s - a}}{{{{\\left( {s - a} \\right)}^2} + {b^2}}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:2.3543em;vertical-align:-1.094em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.2603em;\"><span style=\"top:-2.156em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord mathnormal\">a</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.954em;\"><span style=\"top:-3.2029em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">+</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">b</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.677em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord mathnormal\">a</span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.094em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_21\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>21</span></th>\n<td headers=\"stub_1_21 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup><mi mathvariant=\"bold\">e</mi><mrow><mi>a</mi><mi>t</mi></mrow></msup><mi>sinh</mi><mo></mo><mrow><mo fence=\"true\">(</mo><mrow><mi>b</mi><mi>t</mi></mrow><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">{{\\bf{e}}^{at}}\\sinh \\left( {bt} \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1.0436em;vertical-align:-0.25em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathbf\">e</span></span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7936em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mathnormal mtight\">a</span><span class=\"mord mathnormal mtight\">t</span></span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mop\">sinh</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">b</span><span class=\"mord mathnormal\">t</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td>\n<td headers=\"stub_1_21 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex-display\"><span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><semantics><mrow><mfrac><mi>b</mi><mrow><msup><mrow><mo fence=\"true\">(</mo><mrow><mi>s</mi><mo>−</mo><mi>a</mi></mrow><mo fence=\"true\">)</mo></mrow><mn>2</mn></msup><mo>−</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfrac></mrow><annotation encoding=\"application/x-tex\">\\frac{b}{{{{\\left( {s - a} \\right)}^2} - {b^2}}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:2.4654em;vertical-align:-1.094em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.3714em;\"><span style=\"top:-2.156em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord mathnormal\">a</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.954em;\"><span style=\"top:-3.2029em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">b</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.677em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord mathnormal\">b</span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.094em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_22\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>22</span></th>\n<td headers=\"stub_1_22 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup><mi mathvariant=\"bold\">e</mi><mrow><mi>a</mi><mi>t</mi></mrow></msup><mi>cosh</mi><mo></mo><mrow><mo fence=\"true\">(</mo><mrow><mi>b</mi><mi>t</mi></mrow><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">{{\\bf{e}}^{at}}\\cosh \\left( {bt} \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1.0436em;vertical-align:-0.25em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathbf\">e</span></span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7936em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mathnormal mtight\">a</span><span class=\"mord mathnormal mtight\">t</span></span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mop\">cosh</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">b</span><span class=\"mord mathnormal\">t</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td>\n<td headers=\"stub_1_22 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex-display\"><span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><semantics><mrow><mfrac><mrow><mi>s</mi><mo>−</mo><mi>a</mi></mrow><mrow><msup><mrow><mo fence=\"true\">(</mo><mrow><mi>s</mi><mo>−</mo><mi>a</mi></mrow><mo fence=\"true\">)</mo></mrow><mn>2</mn></msup><mo>−</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfrac></mrow><annotation encoding=\"application/x-tex\">\\frac{{s - a}}{{{{\\left( {s - a} \\right)}^2} - {b^2}}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:2.3543em;vertical-align:-1.094em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.2603em;\"><span style=\"top:-2.156em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord mathnormal\">a</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.954em;\"><span style=\"top:-3.2029em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">b</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7401em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.677em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord mathnormal\">a</span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.094em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_23\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>23</span></th>\n<td headers=\"stub_1_23 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup><mi>t</mi><mi>n</mi></msup><msup><mi mathvariant=\"bold\">e</mi><mrow><mi>a</mi><mi>t</mi></mrow></msup><mo separator=\"true\">,</mo><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mi>n</mi><mo>=</mo><mn>1</mn><mo separator=\"true\">,</mo><mn>2</mn><mo separator=\"true\">,</mo><mn>3</mn><mo separator=\"true\">,</mo><mo>…</mo></mrow><annotation encoding=\"application/x-tex\">{t^n}{{\\bf{e}}^{at}},\\,\\,\\,\\,\\,n = 1,2,3, \\ldots</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:0.988em;vertical-align:-0.1944em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">t</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.6644em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mathnormal mtight\">n</span></span></span></span></span></span></span></span></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathbf\">e</span></span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7936em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mathnormal mtight\">a</span><span class=\"mord mathnormal mtight\">t</span></span></span></span></span></span></span></span></span></span><span class=\"mpunct\">,</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord mathnormal\">n</span><span class=\"mspace\" style=\"margin-right:0.2778em;\"></span><span class=\"mrel\">=</span><span class=\"mspace\" style=\"margin-right:0.2778em;\"></span></span><span class=\"base\"><span class=\"strut\" style=\"height:0.8389em;vertical-align:-0.1944em;\"></span><span class=\"mord\">1</span><span class=\"mpunct\">,</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord\">2</span><span class=\"mpunct\">,</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord\">3</span><span class=\"mpunct\">,</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\">…</span></span></span></span></span></td>\n<td headers=\"stub_1_23 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex-display\"><span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><semantics><mrow><mfrac><mrow><mi>n</mi><mo stretchy=\"false\">!</mo></mrow><msup><mrow><mo fence=\"true\">(</mo><mrow><mi>s</mi><mo>−</mo><mi>a</mi></mrow><mo fence=\"true\">)</mo></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup></mfrac></mrow><annotation encoding=\"application/x-tex\">\\frac{{n!}}{{{{\\left( {s - a} \\right)}^{n + 1}}}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:2.4654em;vertical-align:-1.094em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.3714em;\"><span style=\"top:-2.156em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord mathnormal\">a</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.954em;\"><span style=\"top:-3.2029em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mathnormal mtight\">n</span><span class=\"mbin mtight\">+</span><span class=\"mord mtight\">1</span></span></span></span></span></span></span></span></span></span></span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.677em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">n</span><span class=\"mclose\">!</span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.094em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_24\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>24</span></th>\n<td headers=\"stub_1_24 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi>f</mi><mrow><mo fence=\"true\">(</mo><mrow><mi>c</mi><mi>t</mi></mrow><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">f\\left( {ct} \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mord mathnormal\" style=\"margin-right:0.10764em;\">f</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">c</span><span class=\"mord mathnormal\">t</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td>\n<td headers=\"stub_1_24 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex-display\"><span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><semantics><mrow><mfrac><mn>1</mn><mi>c</mi></mfrac><mi>F</mi><mrow><mo fence=\"true\">(</mo><mfrac><mi>s</mi><mi>c</mi></mfrac><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">\\frac{1}{c}F\\left( {\\frac{s}{c}} \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:2.0074em;vertical-align:-0.686em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.3214em;\"><span style=\"top:-2.314em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord mathnormal\">c</span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.677em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\">1</span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.686em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span><span class=\"mord mathnormal\" style=\"margin-right:0.13889em;\">F</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\"><span class=\"delimsizing size2\">(</span></span><span class=\"mord\"><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.1076em;\"><span style=\"top:-2.314em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord mathnormal\">c</span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.677em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord mathnormal\">s</span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.686em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span><span class=\"mclose delimcenter\" style=\"top:0em;\"><span class=\"delimsizing size2\">)</span></span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_25\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>25</span></th>\n<td headers=\"stub_1_25 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msub><mi>u</mi><mi>c</mi></msub><mrow><mo fence=\"true\">(</mo><mi>t</mi><mo fence=\"true\">)</mo></mrow><mo>=</mo><mi>u</mi><mrow><mo fence=\"true\">(</mo><mrow><mi>t</mi><mo>−</mo><mi>c</mi></mrow><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">{u_c}\\left( t \\right) = u\\left( {t - c} \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">u</span><span class=\"msupsub\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.1514em;\"><span style=\"top:-2.55em;margin-left:0em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mathnormal mtight\">c</span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.15em;\"><span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">t</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.2778em;\"></span><span class=\"mrel\">=</span><span class=\"mspace\" style=\"margin-right:0.2778em;\"></span></span><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mord mathnormal\">u</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">t</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord mathnormal\">c</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span><span style=\"white-space:nowrap;font-style:normal;font-weight:bold;line-height:0;\">[1]</span></td>\n<td headers=\"stub_1_25 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex-display\"><span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"><semantics><mrow><mfrac><msup><mi mathvariant=\"bold\">e</mi><mrow><mo>−</mo><mi>c</mi><mi>s</mi></mrow></msup><mi>s</mi></mfrac></mrow><annotation encoding=\"application/x-tex\">\\frac{{{{\\bf{e}}^{ - cs}}}}{s}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:2.1343em;vertical-align:-0.686em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.4483em;\"><span style=\"top:-2.314em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord mathnormal\">s</span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.677em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathbf\">e</span></span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7713em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\">−</span><span class=\"mord mathnormal mtight\">cs</span></span></span></span></span></span></span></span></span></span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.686em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_26\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>26</span></th>\n<td headers=\"stub_1_26 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi>δ</mi><mrow><mo fence=\"true\">(</mo><mrow><mi>t</mi><mo>−</mo><mi>c</mi></mrow><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">\\delta \\left( {t - c} \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mord mathnormal\" style=\"margin-right:0.03785em;\">δ</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">t</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord mathnormal\">c</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span><span style=\"white-space:nowrap;font-style:normal;font-weight:bold;line-height:0;\">[2]</span></td>\n<td headers=\"stub_1_26 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup><mi mathvariant=\"bold\">e</mi><mrow><mo>−</mo><mi>c</mi><mi>s</mi></mrow></msup></mrow><annotation encoding=\"application/x-tex\">{{\\bf{e}}^{ - cs}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:0.7713em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathbf\">e</span></span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7713em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\">−</span><span class=\"mord mathnormal mtight\">cs</span></span></span></span></span></span></span></span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_27\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>27</span></th>\n<td headers=\"stub_1_27 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msub><mi>u</mi><mi>c</mi></msub><mrow><mo fence=\"true\">(</mo><mi>t</mi><mo fence=\"true\">)</mo></mrow><mi>f</mi><mrow><mo fence=\"true\">(</mo><mrow><mi>t</mi><mo>−</mo><mi>c</mi></mrow><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">{u_c}\\left( t \\right)f\\left( {t - c} \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">u</span><span class=\"msupsub\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.1514em;\"><span style=\"top:-2.55em;margin-left:0em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mathnormal mtight\">c</span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.15em;\"><span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">t</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord mathnormal\" style=\"margin-right:0.10764em;\">f</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">t</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord mathnormal\">c</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td>\n<td headers=\"stub_1_27 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup><mi mathvariant=\"bold\">e</mi><mrow><mo>−</mo><mi>c</mi><mi>s</mi></mrow></msup><mi>F</mi><mrow><mo fence=\"true\">(</mo><mi>s</mi><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">{{\\bf{e}}^{ - cs}}F\\left( s \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1.0213em;vertical-align:-0.25em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathbf\">e</span></span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7713em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\">−</span><span class=\"mord mathnormal mtight\">cs</span></span></span></span></span></span></span></span></span></span><span class=\"mord mathnormal\" style=\"margin-right:0.13889em;\">F</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">s</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_28\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>28</span></th>\n<td headers=\"stub_1_28 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msub><mi>u</mi><mi>c</mi></msub><mrow><mo fence=\"true\">(</mo><mi>t</mi><mo fence=\"true\">)</mo></mrow><mi>g</mi><mrow><mo fence=\"true\">(</mo><mi>t</mi><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">{u_c}\\left( t \\right)g\\left( t \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">u</span><span class=\"msupsub\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.1514em;\"><span style=\"top:-2.55em;margin-left:0em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mathnormal mtight\">c</span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.15em;\"><span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">t</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord mathnormal\" style=\"margin-right:0.03588em;\">g</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">t</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td>\n<td headers=\"stub_1_28 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup><mi mathvariant=\"bold\">e</mi><mrow><mo>−</mo><mi>c</mi><mi>s</mi></mrow></msup><mi mathvariant=\"script\">L</mi><mrow><mo fence=\"true\">{</mo><mrow><mi>g</mi><mrow><mo fence=\"true\">(</mo><mrow><mi>t</mi><mo>+</mo><mi>c</mi></mrow><mo fence=\"true\">)</mo></mrow></mrow><mo fence=\"true\">}</mo></mrow></mrow><annotation encoding=\"application/x-tex\">{{\\bf{e}}^{ - cs}}{\\mathcal{L}}\\left\\{ {g\\left( {t + c} \\right)} \\right\\}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1.0213em;vertical-align:-0.25em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathbf\">e</span></span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7713em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\">−</span><span class=\"mord mathnormal mtight\">cs</span></span></span></span></span></span></span></span></span></span><span class=\"mord\"><span class=\"mord mathcal\">L</span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">{</span><span class=\"mord\"><span class=\"mord mathnormal\" style=\"margin-right:0.03588em;\">g</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">t</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">+</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord mathnormal\">c</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">}</span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_29\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>29</span></th>\n<td headers=\"stub_1_29 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup><mi mathvariant=\"bold\">e</mi><mrow><mi>c</mi><mi>t</mi></mrow></msup><mi>f</mi><mrow><mo fence=\"true\">(</mo><mi>t</mi><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">{{\\bf{e}}^{ct}}f\\left( t \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1.0436em;vertical-align:-0.25em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathbf\">e</span></span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7936em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mathnormal mtight\">c</span><span class=\"mord mathnormal mtight\">t</span></span></span></span></span></span></span></span></span></span><span class=\"mord mathnormal\" style=\"margin-right:0.10764em;\">f</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">t</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td>\n<td headers=\"stub_1_29 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi>F</mi><mrow><mo fence=\"true\">(</mo><mrow><mi>s</mi><mo>−</mo><mi>c</mi></mrow><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">F\\left( {s - c} \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mord mathnormal\" style=\"margin-right:0.13889em;\">F</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord mathnormal\">c</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_30\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>30</span></th>\n<td headers=\"stub_1_30 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup><mi>t</mi><mi>n</mi></msup><mi>f</mi><mrow><mo fence=\"true\">(</mo><mi>t</mi><mo fence=\"true\">)</mo></mrow><mo separator=\"true\">,</mo><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mtext> </mtext><mi>n</mi><mo>=</mo><mn>1</mn><mo separator=\"true\">,</mo><mn>2</mn><mo separator=\"true\">,</mo><mn>3</mn><mo separator=\"true\">,</mo><mo>…</mo></mrow><annotation encoding=\"application/x-tex\">{t^n}f\\left( t \\right),\\,\\,\\,\\,\\,n = 1,2,3, \\ldots</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">t</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.6644em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mathnormal mtight\">n</span></span></span></span></span></span></span></span></span><span class=\"mord mathnormal\" style=\"margin-right:0.10764em;\">f</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">t</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mpunct\">,</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord mathnormal\">n</span><span class=\"mspace\" style=\"margin-right:0.2778em;\"></span><span class=\"mrel\">=</span><span class=\"mspace\" style=\"margin-right:0.2778em;\"></span></span><span class=\"base\"><span class=\"strut\" style=\"height:0.8389em;vertical-align:-0.1944em;\"></span><span class=\"mord\">1</span><span class=\"mpunct\">,</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord\">2</span><span class=\"mpunct\">,</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord\">3</span><span class=\"mpunct\">,</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\">…</span></span></span></span></span></td>\n<td headers=\"stub_1_30 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup><mrow><mo fence=\"true\">(</mo><mrow><mo>−</mo><mn>1</mn></mrow><mo fence=\"true\">)</mo></mrow><mi>n</mi></msup><msup><mi>F</mi><mrow><mo fence=\"true\">(</mo><mi>n</mi><mo fence=\"true\">)</mo></mrow></msup><mrow><mo fence=\"true\">(</mo><mi>s</mi><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">{\\left( { - 1} \\right)^n}{F^{\\left( n \\right)}}\\left( s \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1.138em;vertical-align:-0.25em;\"></span><span class=\"mord\"><span class=\"minner\"><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord\">−</span><span class=\"mord\">1</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.8043em;\"><span style=\"top:-3.2029em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mathnormal mtight\">n</span></span></span></span></span></span></span></span></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\" style=\"margin-right:0.13889em;\">F</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.888em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"minner mtight\"><span class=\"mopen mtight delimcenter\" style=\"top:0em;\"><span class=\"mtight\">(</span></span><span class=\"mord mathnormal mtight\">n</span><span class=\"mclose mtight delimcenter\" style=\"top:0em;\"><span class=\"mtight\">)</span></span></span></span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">s</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_31\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>31</span></th>\n<td headers=\"stub_1_31 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mstyle scriptlevel=\"0\" displaystyle=\"true\"><mfrac><mn>1</mn><mi>t</mi></mfrac><mi>f</mi><mrow><mo fence=\"true\">(</mo><mi>t</mi><mo fence=\"true\">)</mo></mrow></mstyle></mrow><annotation encoding=\"application/x-tex\">\\displaystyle \\frac{1}{t}f\\left( t \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:2.0074em;vertical-align:-0.686em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.3214em;\"><span style=\"top:-2.314em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord mathnormal\">t</span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.677em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\">1</span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.686em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span><span class=\"mord mathnormal\" style=\"margin-right:0.10764em;\">f</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">t</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td>\n<td headers=\"stub_1_31 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msubsup><mo>∫</mo><mrow><mtext> </mtext><mi>s</mi></mrow><mrow><mtext> </mtext><mi mathvariant=\"normal\">∞</mi></mrow></msubsup><mrow><mi>F</mi><mrow><mo fence=\"true\">(</mo><mi>u</mi><mo fence=\"true\">)</mo></mrow><mtext> </mtext><mi>d</mi><mi>u</mi></mrow></mrow><annotation encoding=\"application/x-tex\">\\int_{{\\,s}}^{{\\,\\infty }}{{F\\left( u \\right)\\,du}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1.2151em;vertical-align:-0.3558em;\"></span><span class=\"mop\"><span class=\"mop op-symbol small-op\" style=\"margin-right:0.19445em;position:relative;top:-0.0006em;\">∫</span><span class=\"msupsub\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.8593em;\"><span style=\"top:-2.3442em;margin-left:-0.1945em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mspace mtight\" style=\"margin-right:0.1952em;\"></span><span class=\"mord mathnormal mtight\">s</span></span></span></span></span><span style=\"top:-3.2579em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mspace mtight\" style=\"margin-right:0.1952em;\"></span><span class=\"mord mtight\">∞</span></span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.3558em;\"><span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\" style=\"margin-right:0.13889em;\">F</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">u</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord mathnormal\">d</span><span class=\"mord mathnormal\">u</span></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_32\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>32</span></th>\n<td headers=\"stub_1_32 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mstyle scriptlevel=\"0\" displaystyle=\"true\"><msubsup><mo>∫</mo><mrow><mtext> </mtext><mn>0</mn></mrow><mrow><mtext> </mtext><mi>t</mi></mrow></msubsup><mrow><mtext> </mtext><mi>f</mi><mrow><mo fence=\"true\">(</mo><mi>v</mi><mo fence=\"true\">)</mo></mrow><mtext> </mtext><mi>d</mi><mi>v</mi></mrow></mstyle></mrow><annotation encoding=\"application/x-tex\">\\displaystyle \\int_{{\\,0}}^{{\\,t}}{{\\,f\\left( v \\right)\\,dv}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:2.4554em;vertical-align:-0.9119em;\"></span><span class=\"mop\"><span class=\"mop op-symbol large-op\" style=\"margin-right:0.44445em;position:relative;top:-0.0011em;\">∫</span><span class=\"msupsub\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.5435em;\"><span style=\"top:-1.7881em;margin-left:-0.4445em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mspace mtight\" style=\"margin-right:0.1952em;\"></span><span class=\"mord mtight\">0</span></span></span></span></span><span style=\"top:-3.8129em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mspace mtight\" style=\"margin-right:0.1952em;\"></span><span class=\"mord mathnormal mtight\">t</span></span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.9119em;\"><span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord mathnormal\" style=\"margin-right:0.10764em;\">f</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\" style=\"margin-right:0.03588em;\">v</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord mathnormal\">d</span><span class=\"mord mathnormal\" style=\"margin-right:0.03588em;\">v</span></span></span></span></span></span></span></td>\n<td headers=\"stub_1_32 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mstyle scriptlevel=\"0\" displaystyle=\"true\"><mfrac><mrow><mi>F</mi><mrow><mo fence=\"true\">(</mo><mi>s</mi><mo fence=\"true\">)</mo></mrow></mrow><mi>s</mi></mfrac></mstyle></mrow><annotation encoding=\"application/x-tex\">\\displaystyle \\frac{{F\\left( s \\right)}}{s}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:2.113em;vertical-align:-0.686em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.427em;\"><span style=\"top:-2.314em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord mathnormal\">s</span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.677em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\" style=\"margin-right:0.13889em;\">F</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">s</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.686em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_33\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>33</span></th>\n<td headers=\"stub_1_33 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mstyle scriptlevel=\"0\" displaystyle=\"true\"><msubsup><mo>∫</mo><mrow><mtext> </mtext><mn>0</mn></mrow><mrow><mtext> </mtext><mi>t</mi></mrow></msubsup><mrow><mi>f</mi><mrow><mo fence=\"true\">(</mo><mrow><mi>t</mi><mo>−</mo><mi>τ</mi></mrow><mo fence=\"true\">)</mo></mrow><mi>g</mi><mrow><mo fence=\"true\">(</mo><mi>τ</mi><mo fence=\"true\">)</mo></mrow><mtext> </mtext><mi>d</mi><mi>τ</mi></mrow></mstyle></mrow><annotation encoding=\"application/x-tex\">\\displaystyle \\int_{{\\,0}}^{{\\,t}}{{f\\left( {t - \\tau } \\right)g\\left( \\tau \\right)\\,d\\tau }}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:2.4554em;vertical-align:-0.9119em;\"></span><span class=\"mop\"><span class=\"mop op-symbol large-op\" style=\"margin-right:0.44445em;position:relative;top:-0.0011em;\">∫</span><span class=\"msupsub\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.5435em;\"><span style=\"top:-1.7881em;margin-left:-0.4445em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mspace mtight\" style=\"margin-right:0.1952em;\"></span><span class=\"mord mtight\">0</span></span></span></span></span><span style=\"top:-3.8129em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mspace mtight\" style=\"margin-right:0.1952em;\"></span><span class=\"mord mathnormal mtight\">t</span></span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.9119em;\"><span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\" style=\"margin-right:0.10764em;\">f</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">t</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord mathnormal\" style=\"margin-right:0.1132em;\">τ</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord mathnormal\" style=\"margin-right:0.03588em;\">g</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\" style=\"margin-right:0.1132em;\">τ</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord mathnormal\">d</span><span class=\"mord mathnormal\" style=\"margin-right:0.1132em;\">τ</span></span></span></span></span></span></span></td>\n<td headers=\"stub_1_33 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi>F</mi><mrow><mo fence=\"true\">(</mo><mi>s</mi><mo fence=\"true\">)</mo></mrow><mi>G</mi><mrow><mo fence=\"true\">(</mo><mi>s</mi><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">F\\left( s \\right)G\\left( s \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mord mathnormal\" style=\"margin-right:0.13889em;\">F</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">s</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord mathnormal\">G</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">s</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_34\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>34</span></th>\n<td headers=\"stub_1_34 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi>f</mi><mrow><mo fence=\"true\">(</mo><mrow><mi>t</mi><mo>+</mo><mi>T</mi></mrow><mo fence=\"true\">)</mo></mrow><mo>=</mo><mi>f</mi><mrow><mo fence=\"true\">(</mo><mi>t</mi><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">f\\left( {t + T} \\right) = f\\left( t \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mord mathnormal\" style=\"margin-right:0.10764em;\">f</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\"><span class=\"mord mathnormal\">t</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">+</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord mathnormal\" style=\"margin-right:0.13889em;\">T</span></span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.2778em;\"></span><span class=\"mrel\">=</span><span class=\"mspace\" style=\"margin-right:0.2778em;\"></span></span><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mord mathnormal\" style=\"margin-right:0.10764em;\">f</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">t</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td>\n<td headers=\"stub_1_34 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mstyle scriptlevel=\"0\" displaystyle=\"true\"><mfrac><mstyle scriptlevel=\"0\" displaystyle=\"true\"><msubsup><mo>∫</mo><mrow><mtext> </mtext><mn>0</mn></mrow><mrow><mtext> </mtext><mi>T</mi></mrow></msubsup><mrow><msup><mi mathvariant=\"bold\">e</mi><mrow><mo>−</mo><mi>s</mi><mi>t</mi></mrow></msup><mi>f</mi><mrow><mo fence=\"true\">(</mo><mi>t</mi><mo fence=\"true\">)</mo></mrow><mtext> </mtext><mi>d</mi><mi>t</mi></mrow></mstyle><mrow><mn>1</mn><mo>−</mo><msup><mi mathvariant=\"bold\">e</mi><mrow><mo>−</mo><mi>s</mi><mi>T</mi></mrow></msup></mrow></mfrac></mstyle></mrow><annotation encoding=\"application/x-tex\">\\displaystyle \\frac{{\\displaystyle \\int_{{\\,0}}^{{\\,T}}{{{{\\bf{e}}^{ - st}}f\\left( t \\right)\\,dt}}}}{{1 - {{\\bf{e}}^{ - sT}}}}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:3.6625em;vertical-align:-0.7693em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:2.8932em;\"><span style=\"top:-2.9052em;\"><span class=\"pstrut\" style=\"height:3.5912em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\">1</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathbf\">e</span></span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7673em;\"><span style=\"top:-2.989em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\">−</span><span class=\"mord mathnormal mtight\">s</span><span class=\"mord mathnormal mtight\" style=\"margin-right:0.13889em;\">T</span></span></span></span></span></span></span></span></span></span></span></span></span><span style=\"top:-3.8212em;\"><span class=\"pstrut\" style=\"height:3.5912em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-4.8932em;\"><span class=\"pstrut\" style=\"height:3.5912em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mop\"><span class=\"mop op-symbol large-op\" style=\"margin-right:0.44445em;position:relative;top:-0.0011em;\">∫</span><span class=\"msupsub\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.5912em;\"><span style=\"top:-1.7881em;margin-left:-0.4445em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mspace mtight\" style=\"margin-right:0.1952em;\"></span><span class=\"mord mtight\">0</span></span></span></span></span><span style=\"top:-3.8129em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mspace mtight\" style=\"margin-right:0.1952em;\"></span><span class=\"mord mathnormal mtight\" style=\"margin-right:0.13889em;\">T</span></span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.9119em;\"><span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathbf\">e</span></span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.8436em;\"><span style=\"top:-3.113em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\">−</span><span class=\"mord mathnormal mtight\">s</span><span class=\"mord mathnormal mtight\">t</span></span></span></span></span></span></span></span></span></span><span class=\"mord mathnormal\" style=\"margin-right:0.10764em;\">f</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">t</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"mord mathnormal\">d</span><span class=\"mord mathnormal\">t</span></span></span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7693em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_35\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>35</span></th>\n<td headers=\"stub_1_35 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup><mi>f</mi><mo mathvariant=\"normal\" lspace=\"0em\" rspace=\"0em\">′</mo></msup><mrow><mo fence=\"true\">(</mo><mi>t</mi><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">f'\\left( t \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1.0019em;vertical-align:-0.25em;\"></span><span class=\"mord\"><span class=\"mord mathnormal\" style=\"margin-right:0.10764em;\">f</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7519em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\">′</span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">t</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td>\n<td headers=\"stub_1_35 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi>s</mi><mi>F</mi><mrow><mo fence=\"true\">(</mo><mi>s</mi><mo fence=\"true\">)</mo></mrow><mo>−</mo><mi>f</mi><mrow><mo fence=\"true\">(</mo><mn>0</mn><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">sF\\left( s \\right) - f\\left( 0 \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mord mathnormal\">s</span><span class=\"mord mathnormal\" style=\"margin-right:0.13889em;\">F</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">s</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span></span><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mord mathnormal\" style=\"margin-right:0.10764em;\">f</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\">0</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_36\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>36</span></th>\n<td headers=\"stub_1_36 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup><mi>f</mi><mrow><mo mathvariant=\"normal\">′</mo><mo mathvariant=\"normal\">′</mo></mrow></msup><mrow><mo fence=\"true\">(</mo><mi>t</mi><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">f''\\left( t \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1.0019em;vertical-align:-0.25em;\"></span><span class=\"mord\"><span class=\"mord mathnormal\" style=\"margin-right:0.10764em;\">f</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7519em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\">′′</span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">t</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td>\n<td headers=\"stub_1_36 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup><mi>s</mi><mn>2</mn></msup><mi>F</mi><mrow><mo fence=\"true\">(</mo><mi>s</mi><mo fence=\"true\">)</mo></mrow><mo>−</mo><mi>s</mi><mi>f</mi><mrow><mo fence=\"true\">(</mo><mn>0</mn><mo fence=\"true\">)</mo></mrow><mo>−</mo><msup><mi>f</mi><mo mathvariant=\"normal\" lspace=\"0em\" rspace=\"0em\">′</mo></msup><mrow><mo fence=\"true\">(</mo><mn>0</mn><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">{s^2}F\\left( s \\right) - sf\\left( 0 \\right) - f'\\left( 0 \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1.0641em;vertical-align:-0.25em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.8141em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span><span class=\"mord mathnormal\" style=\"margin-right:0.13889em;\">F</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">s</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span></span><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mord mathnormal\">s</span><span class=\"mord mathnormal\" style=\"margin-right:0.10764em;\">f</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\">0</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span></span><span class=\"base\"><span class=\"strut\" style=\"height:1.0019em;vertical-align:-0.25em;\"></span><span class=\"mord\"><span class=\"mord mathnormal\" style=\"margin-right:0.10764em;\">f</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7519em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\">′</span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\">0</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td></tr>\n <tr><th id=\"stub_1_37\" scope=\"row\" class=\"gt_row gt_center gt_stub\"><span class='gt_from_md'>37</span></th>\n<td headers=\"stub_1_37 l_time_domain\" class=\"gt_row gt_center\" style=\"background-color: #F2F2F2;\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup><mi>f</mi><mrow><mo fence=\"true\">(</mo><mi>n</mi><mo fence=\"true\">)</mo></mrow></msup><mrow><mo fence=\"true\">(</mo><mi>t</mi><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">{f^{\\left( n \\right)}}\\left( t \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1.138em;vertical-align:-0.25em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\" style=\"margin-right:0.10764em;\">f</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.888em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"minner mtight\"><span class=\"mopen mtight delimcenter\" style=\"top:0em;\"><span class=\"mtight\">(</span></span><span class=\"mord mathnormal mtight\">n</span><span class=\"mclose mtight delimcenter\" style=\"top:0em;\"><span class=\"mtight\">)</span></span></span></span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">t</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td>\n<td headers=\"stub_1_37 l_laplace_s_domain\" class=\"gt_row gt_center\"><span class='gt_from_md'><link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msup><mi>s</mi><mi>n</mi></msup><mi>F</mi><mrow><mo fence=\"true\">(</mo><mi>s</mi><mo fence=\"true\">)</mo></mrow><mo>−</mo><msup><mi>s</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>f</mi><mrow><mo fence=\"true\">(</mo><mn>0</mn><mo fence=\"true\">)</mo></mrow><mo>−</mo><msup><mi>s</mi><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow></msup><msup><mi>f</mi><mo mathvariant=\"normal\" lspace=\"0em\" rspace=\"0em\">′</mo></msup><mrow><mo fence=\"true\">(</mo><mn>0</mn><mo fence=\"true\">)</mo></mrow><mo>⋯</mo><mo>−</mo><mi>s</mi><msup><mi>f</mi><mrow><mo fence=\"true\">(</mo><mrow><mi>n</mi><mo>−</mo><mn>2</mn></mrow><mo fence=\"true\">)</mo></mrow></msup><mrow><mo fence=\"true\">(</mo><mn>0</mn><mo fence=\"true\">)</mo></mrow><mo>−</mo><msup><mi>f</mi><mrow><mo fence=\"true\">(</mo><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mo fence=\"true\">)</mo></mrow></msup><mrow><mo fence=\"true\">(</mo><mn>0</mn><mo fence=\"true\">)</mo></mrow></mrow><annotation encoding=\"application/x-tex\">{s^n}F\\left( s \\right) - {s^{n - 1}}f\\left( 0 \\right) - {s^{n - 2}}f'\\left( 0 \\right) \\cdots - s{f^{\\left( {n - 2} \\right)}}\\left( 0 \\right) - {f^{\\left( {n - 1} \\right)}}\\left( 0 \\right)</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.6644em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mathnormal mtight\">n</span></span></span></span></span></span></span></span></span><span class=\"mord mathnormal\" style=\"margin-right:0.13889em;\">F</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">s</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span></span><span class=\"base\"><span class=\"strut\" style=\"height:1.0641em;vertical-align:-0.25em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.8141em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mathnormal mtight\">n</span><span class=\"mbin mtight\">−</span><span class=\"mord mtight\">1</span></span></span></span></span></span></span></span></span></span><span class=\"mord mathnormal\" style=\"margin-right:0.10764em;\">f</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\">0</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span></span><span class=\"base\"><span class=\"strut\" style=\"height:1.0641em;vertical-align:-0.25em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\">s</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.8141em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mathnormal mtight\">n</span><span class=\"mbin mtight\">−</span><span class=\"mord mtight\">2</span></span></span></span></span></span></span></span></span></span><span class=\"mord\"><span class=\"mord mathnormal\" style=\"margin-right:0.10764em;\">f</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.7519em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\">′</span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\">0</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\">⋯</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span></span><span class=\"base\"><span class=\"strut\" style=\"height:1.138em;vertical-align:-0.25em;\"></span><span class=\"mord mathnormal\">s</span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\" style=\"margin-right:0.10764em;\">f</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.888em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"minner mtight\"><span class=\"mopen mtight delimcenter\" style=\"top:0em;\"><span class=\"mtight\">(</span></span><span class=\"mord mtight\"><span class=\"mord mathnormal mtight\">n</span><span class=\"mbin mtight\">−</span><span class=\"mord mtight\">2</span></span><span class=\"mclose mtight delimcenter\" style=\"top:0em;\"><span class=\"mtight\">)</span></span></span></span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\">0</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span><span class=\"mbin\">−</span><span class=\"mspace\" style=\"margin-right:0.2222em;\"></span></span><span class=\"base\"><span class=\"strut\" style=\"height:1.138em;vertical-align:-0.25em;\"></span><span class=\"mord\"><span class=\"mord\"><span class=\"mord mathnormal\" style=\"margin-right:0.10764em;\">f</span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.888em;\"><span style=\"top:-3.063em;margin-right:0.05em;\"><span class=\"pstrut\" style=\"height:2.7em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"minner mtight\"><span class=\"mopen mtight delimcenter\" style=\"top:0em;\"><span class=\"mtight\">(</span></span><span class=\"mord mtight\"><span class=\"mord mathnormal mtight\">n</span><span class=\"mbin mtight\">−</span><span class=\"mord mtight\">1</span></span><span class=\"mclose mtight delimcenter\" style=\"top:0em;\"><span class=\"mtight\">)</span></span></span></span></span></span></span></span></span></span></span></span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord\">0</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span></span></span></span></span></td></tr>\n </tbody>\n <tfoot class=\"gt_sourcenotes\">\n <tr>\n <td class=\"gt_sourcenote\" colspan=\"3\"><span class='gt_from_md'>The hyperbolic functions: <link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi>cosh</mi><mo></mo><mrow><mo fence=\"true\">(</mo><mi>t</mi><mo fence=\"true\">)</mo></mrow><mo>=</mo><mfrac><mrow><msup><mi mathvariant=\"bold\">e</mi><mi>t</mi></msup><mo>+</mo><msup><mi mathvariant=\"bold\">e</mi><mrow><mo>−</mo><mi>t</mi></mrow></msup></mrow><mn>2</mn></mfrac></mrow><annotation encoding=\"application/x-tex\">\\cosh \\left( t \\right) = \\frac{{{{\\bf{e}}^t} + {{\\bf{e}}^{ - t}}}}{2}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mop\">cosh</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">t</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.2778em;\"></span><span class=\"mrel\">=</span><span class=\"mspace\" style=\"margin-right:0.2778em;\"></span></span><span class=\"base\"><span class=\"strut\" style=\"height:1.3482em;vertical-align:-0.345em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.0032em;\"><span style=\"top:-2.655em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\">2</span></span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.394em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mord mathbf mtight\">e</span></span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.8703em;\"><span style=\"top:-2.931em;margin-right:0.0714em;\"><span class=\"pstrut\" style=\"height:2.5em;\"></span><span class=\"sizing reset-size3 size1 mtight\"><span class=\"mord mathnormal mtight\">t</span></span></span></span></span></span></span></span></span><span class=\"mbin mtight\">+</span><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mord mathbf mtight\">e</span></span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.8703em;\"><span style=\"top:-2.931em;margin-right:0.0714em;\"><span class=\"pstrut\" style=\"height:2.5em;\"></span><span class=\"sizing reset-size3 size1 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\">−</span><span class=\"mord mathnormal mtight\">t</span></span></span></span></span></span></span></span></span></span></span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.345em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span> , <link rel=\"stylesheet\" type=\"text/css\" href=\"https://cdn.jsdelivr.net/npm/katex@<latest>/dist/katex.min.css\" data-external=\"1\">\n<span class=\"katex\"><span class=\"katex-mathml\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><mi>sinh</mi><mo></mo><mrow><mo fence=\"true\">(</mo><mi>t</mi><mo fence=\"true\">)</mo></mrow><mo>=</mo><mfrac><mrow><msup><mi mathvariant=\"bold\">e</mi><mi>t</mi></msup><mo>−</mo><msup><mi mathvariant=\"bold\">e</mi><mrow><mo>−</mo><mi>t</mi></mrow></msup></mrow><mn>2</mn></mfrac></mrow><annotation encoding=\"application/x-tex\">\\sinh \\left( t \\right) = \\frac{{{{\\bf{e}}^t} - {{\\bf{e}}^{ - t}}}}{2}</annotation></semantics></math></span><span class=\"katex-html\" aria-hidden=\"true\"><span class=\"base\"><span class=\"strut\" style=\"height:1em;vertical-align:-0.25em;\"></span><span class=\"mop\">sinh</span><span class=\"mspace\" style=\"margin-right:0.1667em;\"></span><span class=\"minner\"><span class=\"mopen delimcenter\" style=\"top:0em;\">(</span><span class=\"mord mathnormal\">t</span><span class=\"mclose delimcenter\" style=\"top:0em;\">)</span></span><span class=\"mspace\" style=\"margin-right:0.2778em;\"></span><span class=\"mrel\">=</span><span class=\"mspace\" style=\"margin-right:0.2778em;\"></span></span><span class=\"base\"><span class=\"strut\" style=\"height:1.3482em;vertical-align:-0.345em;\"></span><span class=\"mord\"><span class=\"mopen nulldelimiter\"></span><span class=\"mfrac\"><span class=\"vlist-t vlist-t2\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:1.0032em;\"><span style=\"top:-2.655em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\">2</span></span></span></span><span style=\"top:-3.23em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"frac-line\" style=\"border-bottom-width:0.04em;\"></span></span><span style=\"top:-3.394em;\"><span class=\"pstrut\" style=\"height:3em;\"></span><span class=\"sizing reset-size6 size3 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mord mathbf mtight\">e</span></span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.8703em;\"><span style=\"top:-2.931em;margin-right:0.0714em;\"><span class=\"pstrut\" style=\"height:2.5em;\"></span><span class=\"sizing reset-size3 size1 mtight\"><span class=\"mord mathnormal mtight\">t</span></span></span></span></span></span></span></span></span><span class=\"mbin mtight\">−</span><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\"><span class=\"mord mathbf mtight\">e</span></span></span></span><span class=\"msupsub\"><span class=\"vlist-t\"><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.8703em;\"><span style=\"top:-2.931em;margin-right:0.0714em;\"><span class=\"pstrut\" style=\"height:2.5em;\"></span><span class=\"sizing reset-size3 size1 mtight\"><span class=\"mord mtight\"><span class=\"mord mtight\">−</span><span class=\"mord mathnormal mtight\">t</span></span></span></span></span></span></span></span></span></span></span></span></span></span></span><span class=\"vlist-s\"></span></span><span class=\"vlist-r\"><span class=\"vlist\" style=\"height:0.345em;\"><span></span></span></span></span></span><span class=\"mclose nulldelimiter\"></span></span></span></span></span></span></td>\n </tr>\n </tfoot>\n <tfoot>\n <tr class=\"gt_footnotes\">\n <td class=\"gt_footnote\" colspan=\"3\">\n <div style=\"padding-bottom:2px;\"><span class=\"gt_footnote_marks\" style=\"white-space:nowrap;font-style:italic;font-weight:normal;line-height:0;\"><sup>1</sup></span> The Heaviside Function. <span class=\"gt_footnote_marks\" style=\"white-space:nowrap;font-style:italic;font-weight:normal;line-height:0;\"><sup>2</sup></span> The Dirac Delta Function.</div>\n </td>\n </tr>\n </tfoot>\n</table>"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.