#' Create other clusters
#'
#' @param planning Calendar data read with \code{\link{read_calendar}}.
#' @param infos Info about clusters read with \code{\link{read_info}}.
#' @param hypothesis Kp coefficients read with \code{\link{read_kp_edf}}. If not \code{NULL}, used to compute FO rate.
#' @param start_date Starting date of the study, if \code{NULL} (default),
#' the date will be retrieve from the Antares study.
#' @param area_name Name of the area where to create clusters.
#' @param constraints Stretch/Zircaloy constraints read with
#' \code{\link{read_constraints}}. Defaults to NULL.
#' @param opts
#' List of simulation parameters returned by the function
#' \code{setSimulationPath}
#'
#' @export
#'
#' @importFrom antaresRead simOptions
#' @importFrom antaresEditObject createCluster
#' @importFrom lubridate hours days as_datetime
#' @importFrom stats setNames
#' @importFrom stringi stri_replace_all_regex
#' @importFrom progress progress_bar
#' @importFrom utils head
#' @importFrom data.table data.table rbindlist :=
create_clusters_other <- function(planning, infos, hypothesis = NULL,
start_date = NULL, area_name = NULL,
constraints = NULL,
opts = simOptions()) {
if (is.null(start_date))
start_date <- format(opts$start, format = "%Y-%m-%d")
area_name <- get_area_name(area_name)
n_days <- if (is_leapyear(opts)) 366 else 365
planning <- copy(planning)
planning[is.na(code_gp), code_gp := nom_site]
planning[nom_site == "PONT SUR SAMBRE", code_gp := "SAMBRT1"]
planning[nom_site == "CROIX DE METZ", code_gp := "C.ME5T01"]
infos[is.na(`for`), `for` := 1]
infos[, pmax := as.numeric(pmax)]
infos[is.na(pmax), pmax := 0]
unique_code_gp <- unique(infos$code_gp)
code_gp_rm <- setdiff(union(planning$code_gp, infos$code_gp), unique_code_gp)
if (length(code_gp_rm) > 0) {
warning(paste(
"These clusters have been removed:", paste(code_gp_rm, collapse = ", "), "(not on info file)"
), call. = FALSE)
}
pb <- progress_bar$new(
format = " Preparing modulation data [:bar] :percent",
total = length(unique_code_gp), clear = FALSE
)
datetime_study <- seq(from = as.POSIXct(start_date, tz = "UTC"), length.out = 8760, by = "1 hour")
datetime_study_chr <- as.character(datetime_study)
# Modulation data
modulation_list <- lapply(
X = setNames(
object = unique_code_gp,
nm = unique_code_gp
),
FUN = function(cluster) {
pb$tick()
dat <- planning[code_gp == cluster & !is.na(dt_debut_arret)]
if (nrow(dat) == 0) {
capacity_modulation <- rep(1, times = 8760 * 1)
} else {
datetime_prolongation <- lapply(
X = seq_len(nrow(dat)),
FUN = function(i) {
if (dat$dt_fin_arret[i] > dat$dt_debut_arret[i]) {
res <- seq(
from = as_datetime(dat$dt_debut_arret[i]),
to = dat$dt_fin_arret[i] + days(1) - hours(1),
by = "1 hour"
)
as.character(res)
}
}
)
datetime_prolongation <- unlist(datetime_prolongation)
capacity_modulation <- (!datetime_study_chr %in% datetime_prolongation) * 1
}
if (!is.null(constraints) && cluster %in% constraints$groupe) {
date_debut <- constraints[groupe == cluster, date_debut]
date_fin <- constraints[groupe == cluster, date_fin]
min_gen_modulation <- ifelse(datetime_study >= date_debut & datetime_study < date_fin, 1, 0)
} else {
min_gen_modulation <- rep(0, times = 8760 * 1)
}
matrix(
data = c(
rep(1, times = 8760 * 2),
capacity_modulation,
min_gen_modulation
),
ncol = 4
)
}
)
pb <- progress_bar$new(
format = " Creating thermal clusters [:bar] :percent",
total = length(unique_code_gp), clear = FALSE
)
if (!is.null(hypothesis)) {
cols_kp <- grep("kp_\\d{4}.*", names(hypothesis), value = TRUE)
kp <- hypothesis[, lapply(.SD, mean, na.rm = TRUE), by = list(code_gp = name_desc), .SDcols = cols_kp]
}
for (cluster in unique_code_gp) {
pb$tick()
infos_clus <- infos[code_gp == cluster]
cluster_infos <- descr_clusters(infos_clus[["name_desc"]])
if (!is.null(hypothesis) && isTRUE(infos_clus[["name_desc"]] %in% hypothesis$name_desc)) {
fo_rate <- get_fo_rate_edf(edf = kp, code_groupe = infos_clus[["name_desc"]], date_study = start_date)
fo_rate <- 1 - head(fo_rate$kp_value, n_days)
} else {
# fo_rate <- rep(1 - infos_clus[["for"]], times = 365)
fo_rate <- rep(0.05, times = n_days)
}
opts <- createCluster(
opts = opts,
area = area_name,
cluster_name = stri_replace_all_regex(str = cluster, pattern = "[^[:alnum:]]", replacement = "_"),
add_prefix = TRUE,
group = cluster_infos[["group"]],
unitcount = 1L,
nominalcapacity = floor(infos_clus$pmax),
`min-stable-power` = floor(infos_clus$pmin),
`must-run` = FALSE,
# `min-down-time` = 1L,
# `min-up-time` = 168L,
`min-up-time` = cluster_infos[["min-up-time"]],
`min-down-time` = cluster_infos[["min-down-time"]],
spinning = cluster_infos[["spinning"]],
`marginal-cost` = cluster_infos[["marginal-cost"]],
`spread-cost` = cluster_infos[["spread-cost"]],
`startup-cost` = cluster_infos[["startup-cost"]],
`market-bid-cost` = cluster_infos[["market-bid-cost"]],
co2 = cluster_infos[["co2"]],
prepro_data = matrix(
data = c(
rep(7, times = n_days),
rep(1, times = n_days),
fo_rate,
rep(0, times = n_days * 2),
rep(1, times = n_days * 1)
),
ncol = 6
),
prepro_modulation = modulation_list[[cluster]]
)
}
invisible(opts)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.