knitr::opts_chunk$set( collapse = TRUE, comment = "#>", gganimate = list( nframes = 0 ), out.width = "100%" ) knitr::opts_chunk$set(echo = TRUE, warning = FALSE, message = FALSE)
suppressPackageStartupMessages({ library(covmuller) library(tidyverse) library(ggfittext) }) theme_set(CovmullerTheme())
gisaid_metadata <- qs::qread("~/data/epicov/metadata_tsv_2024_04_11.qs") gisaid_india <- FilterGISAIDIndia(gisaid_metadata_all = gisaid_metadata) vocs <- GetVOCs() custom_voc_mapping <- list( `JN.1` = "JN.1", `JN.1.*` = "JN.1", `HV.1` = "HV.1", `HV.1.*` = "HV.1", `B.1` = "B.1", `B.1.1.306` = "B.1", `B.1.1.306.*` = "B.1", `B.1.1.326` = "B.1", `B.1.36.29` = "B.1", `B.1.560` = "B.1", `B.1.1` = "B.1", `B.1.210` = "B.1", `B.1.36.8` = "B.1", `B.1.36` = "B.1", `B.1.36.*` = "B.1" ) gisaid_india <- gisaid_india %>% filter(pangolin_lineage != "None") %>% filter(pangolin_lineage != "Unassigned") gisaid_india$District <- stringr::str_to_title(gisaid_india$District) gisaid_india$City <- stringr::str_to_title(gisaid_india$City) gisaid_india$custom_city <- gisaid_india$City gisaid_india$custom_city[gisaid_india$custom_city == ""] <- gisaid_india$District[gisaid_india$custom_city == ""] gisaid_india$custom_city <- stringr::str_to_title(gisaid_india$custom_city) gisaid_india <- CollapseLineageToVOCs( variant_df = gisaid_india, vocs = vocs, custom_voc_mapping = custom_voc_mapping, summarize = FALSE ) gisaid_india_all <- gisaid_india
state_month_counts <- SummarizeVariantsMonthwise(gisaid_india) state_month_counts$State <- "India" state_month_prevalence <- CountsToPrevalence(state_month_counts) state_month_prevalence <- CollapseLineageToVOCs( variant_df = state_month_prevalence, vocs = vocs, custom_voc_mapping = custom_voc_mapping, summarize = FALSE ) p5 <- StackedBarPlotPrevalence(state_month_prevalence) p5
GetIndiaCases <- function() { data <- read.csv("https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/cases_deaths/new_cases.csv") confirmed <- data %>% select(date, India) colnames(confirmed)[2] <- c("cases") confirmed$MonthYear <- GetMonthYear(confirmed$date) confirmed$WeekYear <- tsibble::yearweek(confirmed$date) confirmed_subset_weekwise <- confirmed %>% group_by(WeekYear) %>% summarise(cases = mean(cases, na.rm = T)) %>% arrange(WeekYear) confirmed_subset_weekwise$cases <- ceiling(confirmed_subset_weekwise$cases) confirmed_subset_dateweekwise_long_india <- confirmed_subset_weekwise %>% rename(n = cases) %>% rename(WeekYearCollected = WeekYear) } confirmed_subset_dateweekwise_long_india <- GetIndiaCases() gisaid_india_weekwise <- SummarizeVariantsWeekwise(gisaid_india)
voc_to_keep <- gisaid_india_weekwise %>% group_by(lineage_collapsed) %>% summarise(n_sum = sum(n)) %>% filter(n_sum > 10) %>% pull(lineage_collapsed) %>% unique() gisaid_india_weekwise <- gisaid_india_weekwise %>% filter(lineage_collapsed %in% voc_to_keep) india_cases_pred_prob_sel_long <- FitMultinomWeekly(gisaid_india_weekwise, confirmed_subset_dateweekwise_long_india) the_anim <- PlotVariantPrevalenceAnimated(india_cases_pred_prob_sel_long, title = "Estimated cases (weekly average) in India by variant", caption = "**Source: gisaid.org and ourworldindata.org/coronavirus**", date_breaks = "120 days") gganimate::anim_save(filename = here::here("docs/articles/IN_animated.gif"), animation = the_anim)
Look at cases after January, 2022 only:
confirmed_subset_dateweekwise_long_india <- GetIndiaCases() %>% filter(WeekYearCollected >= tsibble::yearweek("2021 W35")) gisaid_india <- gisaid_india %>% filter(MonthYearCollected > "Dec 2021") gisaid_weekwise <- SummarizeVariantsWeekwise(gisaid_india) voc_to_keep <- gisaid_weekwise %>% group_by(lineage_collapsed) %>% summarise(n_sum = sum(n)) %>% filter(n_sum > 10) %>% pull(lineage_collapsed) %>% unique() gisaid_weekwise <- gisaid_weekwise %>% filter(lineage_collapsed %in% voc_to_keep) cases_pred_prob_sel_long <- FitMultinomWeekly(gisaid_weekwise, confirmed_subset_dateweekwise_long_india) the_anim <- PlotVariantPrevalenceAnimated(cases_pred_prob_sel_long, title = "Estimated cases (weekly average) in India by variant", caption = "**Source: gisaid.org and ourworldindata.org/coronavirus**<br>", date_breaks = "90 days") # , trans_y="log10") gganimate::anim_save(filename = here::here("docs/articles/IN_animated_2021.gif"), animation = the_anim)
Look at cases in the last few months:
confirmed_subset_dateweekwise_long_india <- GetIndiaCases() %>% filter(WeekYearCollected >= tsibble::yearweek("2022 W12")) gisaid_india <- gisaid_india %>% filter(MonthYearCollected >= "Mar 2022") gisaid_weekwise <- SummarizeVariantsWeekwise(gisaid_india) voc_to_keep <- gisaid_weekwise %>% group_by(lineage_collapsed) %>% summarise(n_sum = sum(n)) %>% filter(n_sum > 10) %>% pull(lineage_collapsed) %>% unique() gisaid_weekwise <- gisaid_weekwise %>% filter(lineage_collapsed %in% voc_to_keep) cases_pred_prob_sel_long <- FitMultinomWeekly(gisaid_weekwise, confirmed_subset_dateweekwise_long_india) the_anim <- PlotVariantPrevalenceAnimated(cases_pred_prob_sel_long, title = "Estimated cases (weekly average) in India by variant", caption = "**Source: gisaid.org and ourworldindata.org/coronavirus**<br>", date_breaks = "90 days") gganimate::anim_save(filename = here::here("docs/articles/IN_animated_2022.gif"), animation = the_anim)
Look at cases in the last few months:
confirmed_subset_dateweekwise_long_india <- GetIndiaCases() %>% filter(WeekYearCollected >= tsibble::yearweek("2022 W35")) gisaid_india <- gisaid_india %>% filter(MonthYearCollected >= "Dec 2022") gisaid_weekwise <- SummarizeVariantsWeekwise(gisaid_india) voc_to_keep <- gisaid_weekwise %>% group_by(lineage_collapsed) %>% summarise(n_sum = sum(n)) %>% filter(n_sum > 10) %>% pull(lineage_collapsed) %>% unique() gisaid_weekwise <- gisaid_weekwise %>% filter(lineage_collapsed %in% voc_to_keep) cases_pred_prob_sel_long <- FitMultinomWeekly(gisaid_weekwise, confirmed_subset_dateweekwise_long_india) the_anim <- PlotVariantPrevalenceAnimated(cases_pred_prob_sel_long, title = "Estimated cases (weekly average) in India by variant", caption = "**Source: gisaid.org and ourworldindata.org/coronavirus**<br>", date_breaks = "30 days") gganimate::anim_save(filename = here::here("docs/articles/IN_animated_latest.gif"), animation = the_anim)
confirmed_subset_dateweekwise_long_india <- GetIndiaCases() %>% filter(WeekYearCollected >= tsibble::yearweek("2023 W23")) gisaid_india <- gisaid_india %>% filter(MonthYearCollected >= "June 2023") gisaid_weekwise <- SummarizeVariantsWeekwise(gisaid_india) voc_to_keep <- gisaid_weekwise %>% group_by(lineage_collapsed) %>% summarise(n_sum = sum(n)) %>% filter(n_sum > 10) %>% pull(lineage_collapsed) %>% unique() gisaid_weekwise <- gisaid_weekwise %>% filter(lineage_collapsed %in% voc_to_keep) cases_pred_prob_sel_long <- FitMultinomWeekly(gisaid_weekwise, confirmed_subset_dateweekwise_long_india) the_anim <- PlotVariantPrevalenceAnimated(cases_pred_prob_sel_long, title = "Estimated cases (weekly average) in India by variant", caption = "**Source: gisaid.org and ourworldindata.org/coronavirus**<br>", date_breaks = "30 days") gganimate::anim_save(filename = here::here("docs/articles/IN_animated_2023.gif"), animation = the_anim)
How many cases of JN.1 variant have been deposited to GISAID across the states?
jn.1 <- gisaid_india_all %>% filter(lineage_collapsed %in% c("JN.1")) jn.1.grouped <- jn.1 %>% group_by(State) %>% tally() jn.1.grouped <- jn.1.grouped %>% filter(!State %in% c("Unknown", "Unassigned")) %>% arrange(desc(n)) jn.1.grouped$State <- factor(jn.1.grouped$State, levels = jn.1.grouped$State) ggplot(jn.1.grouped, aes(State, n, label = n)) + # , color= "#4682b4" geom_col(position = "identity", fill = "#4682b4") + geom_bar_text(stat = "identity") + xlab("") + ylab("Number of JN.1 samples deposited") + scale_x_discrete(guide = guide_axis(angle = 90)) + labs( title = "Number of JN.1 samples deposited to GISAID from India", caption = paste0("**Source: gisaid.org** <br>", Sys.Date()) )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.