suppressPackageStartupMessages({ library(covmuller) library(COVID19) library(tidyverse) }) theme_set(CovmullerTheme())
counties <- c("New York", "New York City", "New York County", "Queens County", "Bronx County", "Bronx", "Brooklyn", "Manhattan", "Queens", "Richmond County") gisaid_metadata <- qs::qread("~/data/epicov/metadata_tsv_2024_04_11.qs") gisaid_usa <- gisaid_metadata %>% filter(Country == "USA") %>% filter(Host == "Human") # format metadata gisaid_usa <- FormatGISAIDMetadata(gisaid_usa) gisaid_usa <- gisaid_usa %>% arrange(State, MonthYearCollected) %>% filter(pangolin_lineage != "Unknown") gisaid_NY <- gisaid_usa %>% filter(State == "New York") gisaid_NYC <- gisaid_NY %>% filter(District %in% counties) vocs <- GetVOCs() custom_voc_mapping <- list( `JN.1` = "JN.1", `JN.1.*` = "JN.1", `HV.1` = "HV.1", `HV.1.*` = "HV.1", `B.1` = "B.1", `B.1.1.306` = "B.1", `B.1.1.306.*` = "B.1", `B.1.1.326` = "B.1", `B.1.36.29` = "B.1", `B.1.560` = "B.1", `B.1.1` = "B.1", `B.1.210` = "B.1", `B.1.36.8` = "B.1", `B.1.36` = "B.1", `B.1.36.*` = "B.1" ) gisaid_NYC <- gisaid_NYC %>% filter(pangolin_lineage != "None") gisaid_NYC <- CollapseLineageToVOCs( variant_df = gisaid_NYC, vocs = vocs, custom_voc_mapping = custom_voc_mapping, summarize = FALSE )
confirmed <- read_csv("https://raw.githubusercontent.com/nychealth/coronavirus-data/master/trends/data-by-day.csv") %>% select(date_of_interest, CASE_COUNT) colnames(confirmed) <- c("date", "daily_cases") confirmed$WeekYear <- tsibble::yearweek(confirmed$date) confirmed$MonthYear <- GetMonthYear(confirmed$date, datefmt = "%m/%d/%Y") confirmed_subset_dateweekwise_long <- confirmed %>% group_by(WeekYear) %>% summarise(n = ceiling(mean(daily_cases, na.rm = T))) %>% arrange(WeekYear) %>% rename(WeekYearCollected = WeekYear) gisaid_NYC_weekwise <- SummarizeVariantsWeekwise(gisaid_NYC)
state_month_counts <- SummarizeVariantsMonthwise(gisaid_NYC) state_month_counts$State <- "NYC" state_month_prevalence <- CountsToPrevalence(state_month_counts) state_month_prevalence <- CollapseLineageToVOCs( variant_df = state_month_prevalence, vocs = vocs, custom_voc_mapping = custom_voc_mapping, summarize = FALSE ) p5 <- StackedBarPlotPrevalence(state_month_prevalence) p5
voc_to_keep <- gisaid_NYC_weekwise %>% group_by(lineage_collapsed) %>% summarise(n_sum = sum(n)) %>% filter(n_sum > 50) %>% pull(lineage_collapsed) %>% unique() gisaid_NYC_weekwise <- gisaid_NYC_weekwise %>% filter(lineage_collapsed %in% voc_to_keep) newyork_cases_pred_prob_sel_long <- FitMultinomWeekly(gisaid_NYC_weekwise, confirmed_subset_dateweekwise_long) the_anim <- PlotVariantPrevalenceAnimated(newyork_cases_pred_prob_sel_long, title = "Estimated cases (weekly average) in New York City by variant", caption = "**Source: gisaid.org and NYC Health**<br>", date_breaks = "120 days") gganimate::anim_save(filename = here::here("docs/articles/NYC_animated.gif"), animation = the_anim)
Look at cases from 2023:
confirmed_subset_dateweekwise_long <- confirmed %>% filter(MonthYear > "April 2023") %>% group_by(WeekYear) %>% summarise(n = ceiling(mean(daily_cases, na.rm = T))) %>% arrange(WeekYear) %>% rename(WeekYearCollected = WeekYear) gisaid_NYC_subset <- gisaid_NYC %>% filter(MonthYearCollected > "April 2023") gisaid_weekwise <- SummarizeVariantsWeekwise(gisaid_NYC_subset) voc_to_keep <- gisaid_weekwise %>% group_by(lineage_collapsed) %>% summarise(n_sum = sum(n)) %>% filter(n_sum > 1) %>% pull(lineage_collapsed) %>% unique() gisaid_weekwise <- gisaid_weekwise %>% filter(lineage_collapsed %in% voc_to_keep) cases_pred_prob_sel_long <- FitMultinomWeekly(gisaid_weekwise, confirmed_subset_dateweekwise_long) the_anim <- PlotVariantPrevalenceAnimated(cases_pred_prob_sel_long, title = "Estimated cases (weekly average) in New York City by variant", caption = "**Source: gisaid.org and NYC Health**<br>", date_breaks = "30 days") gganimate::anim_save(filename = here::here("docs/articles/NYC_animated_2023.gif"), animation = the_anim)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.