#' Build the text information for a new dataset
#'
#' @title Build the text information for a new dataset
#'
#' @param l.params A list of parameters related to the process of the dataset
#'
#' @return A string
#'
#' @author Samuel Wieczorek
#'
#' @examples
#' getTextForNewDataset(list(filename="foo.msnset"))
#'
#' @export
#'
getTextForNewDataset <- function(l.params){
if (is.null(l.params) || length(l.params)==0) return(NULL)
txt <- tags$ul(as.character(tags$li(paste("Open dataset: ",l.params$filename))))
return (txt)
}
#' Build the text information for the filtering process
#'
#' @title Build the text information for the filtering process
#'
#' @param l.params A list of parameters related to the process of the dataset
#'
#' @return A string
#'
#' @author Samuel Wieczorek
#'
#'
#' @export
#' @importFrom utils str
#'
getTextForFiltering <- function(l.params){
# str(l.params) = list(metacellFilter.df ,
# stringFilter.df,
# numericFilter.df)
if (is.null(l.params) || length(l.params)==0) {return(NULL)}
txt <- "<ul>"
if (!is.null(l.params$metacellFilter) && nrow(l.params$metacellFilter) > 1){
ll <- l.params$metacellFilter$query
txt <- paste(txt,"<li>Metacell filtering: ", paste(ll[-1], collapse=", "),"</li>")
}
if (!is.null(l.params$stringFilter.df) && nrow(l.params$stringFilter.df) > 1){
ll <- l.params$stringFilter.df$Filter
txt <- paste(txt,"<li>Text filtering: ", paste(ll[-1], collapse=", "),"</li>")
}
if (!is.null(l.params$numericFilter.df) && nrow(l.params$numericFilter.df) > 1){
ll <- l.params$numericFilter.df$Filter
txt <- paste(txt,"<li>Numerical filtering: ", paste(ll[-1], collapse=", "),"</li>")
}
txt <- paste(txt,"</ul>" )
return (txt)
}
#' Build the text information for the Normalization process
#'
#' @title Build the text information for the Normalization process
#'
#' @param l.params A list of parameters related to the process of the dataset
#'
#' @return A string
#'
#' @author Samuel Wieczorek
#'
#' @examples
#' getTextForNormalization(list(method="SumByColumns"))
#'
#' @export
#'
getTextForNormalization <- function(l.params){
# l.params <- list(method = input$normalization.method,
# type = input$normalization.type,
# varReduction = input$normalization.variance.reduction,
# quantile = input$normalization.quantile,
# spanLOESS = input$spanLOESS)
if (is.null(l.params) || length(l.params)==0) return(NULL)
txt <- "<ul>"
txt <- paste(txt,"<li>Norm. method: ", l.params$method,"</li>")
if (l.params$method != "GlobalQuantileAlignment"){
txt <- paste(txt,"<li>Application: ", l.params$type,"</li>")
}
switch(l.params$method,
GlobalQuantileAlignment ={ },
SumByColumns = {},
MeanCentering ={ txt <- paste(txt,"<li>Variance reduction: ", l.params$varReduction,"</li>")},
QuantileCentering ={ txt <- paste(txt,"<li>Quantile: ", l.params$quantile,"</li>")},
LOESS ={ txt <- paste(txt,"<li>Span: ", l.params$spanLOESS,"</li>")},
vsn ={}
)
txt <- paste(txt,"</ul>")
return (txt)
}
#' Build the text information for the peptide Imputation process
#'
#' @title Build the text information for the peptide Imputation process
#'
#' @param l.params A list of parameters related to the process of the dataset
#'
#' @return A string
#'
#' @author Samuel Wieczorek
#'
#' @examples
#' params <- list()
#' getTextForpeptideImputation(params)
#'
#' @export
#'
getTextForpeptideImputation <- function(l.params){
# l.params <- list(pepLevel_algorithm = input$peptideLevel_missing.value.algorithm,
# pepLevel_basicAlgorithm = input$peptideLevel_missing.value.basic.algorithm,
# pepLevel_detQuantile = input$peptideLevel_detQuant_quantile,
# pepLevel_detQuant_factor = input$peptideLevel_detQuant_factor,
# pepLevel_imp4p_nbiter = input$peptideLevel_imp4p_nbiter,
# pepLevel_imp4p_withLapala = input$peptideLevel_imp4p_withLapala,
# pepLevel_imp4p_qmin = input$peptideLevel_imp4p_qmin,
# pepLevel_imp4pLAPALA_distrib = input$peptideLevel_imp4pLAPALA_distrib)
if (is.null(l.params) || length(l.params)==0) return(NULL)
txt <- "<ul>"
if (l.params$pepLevel_algorithm == "imp4p"){
txt <- paste(txt,"<li>Algorithm: ", l.params$pepLevel_algorithm,"</li>")
txt <- paste(txt,"<li>Number of iterations: ", l.params$pepLevel_imp4p_nbiter,"</li>")
txt <- paste(txt,"<li>MEC imputation: ", l.params$pepLevel_imp4p_withLapala,"</li>")
if (l.params$pepLevel_imp4p_withLapala){
txt <- paste(txt,"<li>Upper lapala bound: ", l.params$pepLevel_imp4p_qmin,"</li>")
txt <- paste(txt,"<li>Distribution: ", l.params$pepLevel_imp4pLAPALA_distrib,"</li>")
}
} else {
txt <- paste(txt,"<li>Algorithm: ", l.params$pepLevel_basicAlgorithm,"</li>")
if (l.params$pepLevel_basicAlgorithm == "detQuantile"){
txt <- paste(txt,"<li>Quantile: ", l.params$pepLevel_detQuantile,"</li>")
txt <- paste(txt,"<li>Factor: ", l.params$pepLevel_detQuant_factor,"</li>")
}
if (l.params$pepLevel_basicAlgorithm == "KNN"){
txt <- paste(txt,"<li>Nb neighnors: ", l.params$pepLevel_KNN_n,"</li>")
}
}
txt <- paste(txt,"</ul>")
return (txt)
}
#' Build the text information for the Protein Imputation process
#'
#' @title Build the text information for the protein Imputation process
#'
#' @param l.params A list of parameters related to the process of the dataset
#'
#' @return A string
#'
#' @author Samuel Wieczorek
#'
#' @examples
#' params <- list()
#' getTextForproteinImputation(params)
#'
#' @export
#'
getTextForproteinImputation <- function(l.params){
if (is.null(l.params) || length(l.params)==0) return(NULL)
##############################################################
# l.params <- list(POV_algorithm = input$POV_missing.value.algorithm,
# POV_detQuant_quantile = input$POV_detQuant_quantile,
# POV_detQuant_factor = input$POV_detQuant_factor,
# POV_KNN_n = input$KNN_nbNeighbors,
# MEC_algorithm = input$MEC_missing.value.algorithm,
# MEC_detQuant_quantile = input$MEC_detQuant_quantile,
# MEC_detQuant_factor = input$MEC_detQuant_factor,
# MEC_fixedValue= input$MEC_fixedValue)
txt <- "<ul>"
txt <- paste(txt,"<li>POV imputation: ", l.params$POV_algorithm,"</li>")
if (l.params$POV_algorithm == 'detQuantile'){
txt <- paste(txt,"<li>Quantile: ", l.params$POV_detQuant_quantile,"</li>")
txt <- paste(txt,"<li>Factor: ", l.params$POV_detQuant_factor,"</li>")
}
if (l.params$POV_algorithm == 'KNN'){
txt <- paste(txt,"<li>N = ", l.params$POV_KNN_n,"</li>")
}
txt <- paste(txt,"<li>MEC imputation: ", l.params$MEC_algorithm,"</li>")
if (l.params$MEC_algorithm == 'detQuantile'){
txt <- paste(txt,"<li>Quantile: ", l.params$MEC_detQuant_quantile,"</li>")
txt <- paste(txt,"<li>Factor: ", l.params$MEC_detQuant_factor,"</li>")
} else if (l.params$MEC_algorithm == 'fixedValue'){
txt <- paste(txt,"<li>Fixed value: ", l.params$MEC_fixedValue,"</li>")
}
txt <- paste(txt,"</ul>")
return (txt)
}
#' Builds the text information for the Aggregation process
#'
#' @title Build the text information for the Aggregation process
#'
#' @param l.params A list of parameters related to the process of the dataset
#'
#' @return A string
#'
#' @author Samuel Wieczorek
#'
#' @examples
#' params <- list()
#' getTextForAggregation(params)
#'
#' @export
#'
getTextForAggregation <- function(l.params){
# l.params <- list(includeSharedPeptides = input$radioBtn_includeShared,
# operator = input$AggregationOperator,
# considerPeptides = input$AggregationConsider,
# proteinId = input$proteinId,
# topN = input$nTopn
if (is.null(l.params) || length(l.params)==0) return(NULL)
txt <- "<ul>"
txt <- paste(txt,"<li>Protein IDs: ", l.params$proteinId,"</li>")
txt <- paste(txt,"<li>Include shared peptides: ", l.params$includeSharedPeptides,"</li>")
txt <- paste(txt,"<li>Which peptides to consider: ", l.params$considerPeptides,"</li>")
txt <- paste(txt,"<li>Operator: ", l.params$operator,"</li>")
if (l.params$considerPeptides == 'onlyN'){
txt <- paste(txt,"<li>N (most abundant peptides) =", l.params$topN,"</li>")
}
txt <- paste(txt,"</ul>")
return (txt)
}
#' Builds the text information for the hypothesis test process
#'
#' @title Build the text information for the hypothesis test process
#'
#' @param l.params A list of parameters related to the process of the dataset
#'
#' @return A string
#'
#' @author Samuel Wieczorek
#'
#' @examples
#' params <- list(design='OnevsOne', method='limma')
#' getTextForHypothesisTest(params)
#'
#' @export
#'
getTextForHypothesisTest <- function(l.params){
# l.params <- list(design = input$anaDiff_Design,
# method = input$diffAnaMethod,
# ttest_options = input$ttest_options,
# th_logFC = input$seuilLogFC,
# AllPairwiseCompNames = list(logFC = colnames(rv$res_AllPairwiseComparisons$logFC),
# P_Value=colnames(rv$res_AllPairwiseComparisons$P_Value))
# )
if (is.null(l.params) || length(l.params)==0) return(NULL)
txt <- "<ul>"
txt <- paste(txt,"<li>Constrast: ", l.params$design,"</li>")
if (l.params$method == "ttests"){
txt <- paste(txt,"<li>Test: ", l.params$ttest_options,"</li>")
} else {
txt <- paste(txt,"<li>Test: ", l.params$method,"</li>")
}
txt <- paste(txt,"<li>logFC threshold: ", l.params$th_logFC,"</li>")
txt <- paste(txt,"</ul>")
return (txt)
}
#' Build the text information for the differential Analysis process
#'
#' @title Build the text information for the Aggregation process
#'
#' @param l.params A list of parameters related to the process of the dataset
#'
#' @return A string
#'
#' @author Samuel Wieczorek
#'
#' @examples
#' getTextForAnaDiff(list(design="OnevsOne",method="Limma"))
#'
#' @export
#'
getTextForAnaDiff <- function(l.params){
# param
# Condition1
# Condition2
# Comparison
# filterType
# filter_th_NA
# calibMethod
# numValCalibMethod
# th_pval
# FDR
# NbSelected
if (is.null(l.params) || length(l.params)==0) return(NULL)
txt <- "<ul>"
txt <- paste(txt,"<li>The comparison is ", gsub("_", " ",l.params$Comparison, fixed=TRUE),"</li>")
txt <- paste(txt,"<li>The conditions are ", gsub("_", " ",l.params$Condition1, fixed=TRUE), " and ", gsub("_", " ",l.params$Condition2, fixed=TRUE), "</li>")
if (!is.null(l.params$filterType) && (l.params$filterType != "None")){
txt <- paste(txt,"<li>The filter used is ", l.params$filterType,
"with min nb values / lines: ", l.params$filter_th_NA,"</li>")
}
if (!is.null(l.params$calibMethod) ){
if (!is.null(l.params$numValCalibMethod)){
txt <- paste(txt, "<li>The calibration method is ", l.params$calibMethod, ", with num value = ", l.params$numValCalibMethod, "</li>")
} else {
txt <- paste(txt, "<li>The calibration method is ", l.params$calibMethod, "</li>")
}
}
if (!is.null(l.params$th_pval)){
txt <- paste(txt, "<li>The pvalue threshold is ", l.params$th_pval, "</li>")
}
if (!is.null(l.params$FDR)){
txt <- paste(txt, "<li>FDR = ", l.params$FDR, "</li>")
}
txt <- paste(txt,"</ul>")
return (txt)
}
#' Build the text information for the Aggregation process
#'
#' @title Build the text information for the Aggregation process
#'
#' @param l.params A list of parameters related to the process of the dataset
#'
#' @return A string
#'
#' @author Samuel Wieczorek
#'
#' @examples
#' getTextForGOAnalysis(list())
#'
#' @export
#'
getTextForGOAnalysis <- function(l.params){
if (is.null(l.params) || length(l.params)==0) return(NULL)
if (is.null(l.params$whichGO2Save)){return(NULL)}
switch(l.params$whichGO2Save,
Both =
{
txt <- paste(txt, as.character(tags$li(paste(textGOParams,", GO grouping for level(s):",
input$GO_level))))
txt <- paste(txt, as.character(tags$li(paste("GO enrichment with",
", adj p-value cutoff = ", input$pvalueCutoff,
", universe =", input$universe))))
},
Enrichment ={
txt <- paste(txt, as.character(tags$li(paste(textGOParams, " GO enrichment with",
", adj p-value cutoff = ", input$pvalueCutoff,
", universe =", input$universe, sep= " "))))
},
Classification= {
txt <- paste(txt, as.character(tags$li(paste(textGOParams,", GO grouping for level(s):",
input$GO_level,sep=" "))))
}
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.