R/Interplot_plot.R

Defines functions interplot.plot

Documented in interplot.plot

#' Plot Conditional Coefficients in Models with Interaction Terms
#' 
#' Graph based on the data frame of statistics about the conditional effect of an interaction.
#' 
#' @param m A model object including an interaction term, or, alternately, a data frame recording conditional coefficients. This data frame should includes four columns:
#' \itemize{
#'    \item fake: The sequence of \code{var1} (the item whose effect will be conditioned on in the interaction);
#'    \item coef1: The point estimates of the coefficient of \code{var1} at each break point.
#'    \item ub: The upper bound of the simulated 95\% CI.
#'    \item lb: The lower bound of the simulated 95\% CI.
#' }
#' @param var1 The name (as a string) of the variable of interest in the interaction term; its conditional coefficient estimates will be plotted.
#' @param var2 The name (as a string) of the other variable in the interaction term.
#' @param plot A logical value indicating whether the output is a plot or a dataframe including the conditional coefficient estimates of var1, their upper and lower bounds, and the corresponding values of var2.
#' @param steps Desired length of the sequence. A non-negative number, which for seq and seq.int will be rounded up if fractional. The default is 100 or the unique categories in the \code{var2} (when it is less than 100. Also see \code{\link{unique}}).
#' @param ci is a numeric value inherited from the data wrangling functions in this package. Adding it here is just for the method consistency.
#' @param adjCI Succeeded from the data management functions in `interplot` package. 
#' @param hist A logical value indicating if there is a histogram of `var2` added at the bottom of the conditional effect plot.
#' @param var2_dt A numerical value indicating the frequency distribution of `var2`. It is only used when `hist == TRUE`. When the object is a model, the default is the distribution of `var2` of the model. 
#' @param predPro A logical value with default of `FALSE`. When the `m` is an output of a general linear model (class `glm` or `glmerMod`) and the argument is set to `TRUE`, the function will plot predicted probabilities at the values given by `var2_vals`. 
#' @param var2_vals A numerical value indicating the values the predicted probabilities are estimated, when `predPro` is `TRUE`. 
#' @param point A logical value determining the format of plot. By default, the function produces a line plot when var2 takes on ten or more distinct values and a point (dot-and-whisker) plot otherwise; option TRUE forces a point plot.
#' @param sims Number of independent simulation draws used to calculate upper and lower bounds of coefficient estimates: lower values run faster; higher values produce smoother curves.
#' @param xmin A numerical value indicating the minimum value shown of x shown in the graph. Rarely used.
#' @param xmax A numerical value indicating the maximum value shown of x shown in the graph. Rarely used.
#' @param ercolor A character value indicating the outline color of the whisker or ribbon.
#' @param esize A numerical value indicating the size of the whisker or ribbon.
#' @param ralpha A numerical value indicating the transparency of the ribbon.
#' @param rfill A character value indicating the filling color of the ribbon.
#' @param ... Other ggplot aesthetics arguments for points in the dot-whisker plot or lines in the line-ribbon plots. Not currently used.
#' @param stats_cp A character value indicating what statistics to present as the plot note. Three options are available: "none", "ci", and "ks". The default is "none". See the Details for more information.
#' @param txt_caption A character string to add a note for the plot, a value will sending to \code{ggplot2::labs(caption = txt_caption))}.
#' @param ci_diff A numerical vector with a pair of values indicating the confidence intervals of the difference between \code{var1} and \code{var2}.
#' @param ks_diff A \code{ks.test} object of the effect of \code{var1} conditioned on \code{var2}.
#' 
#' @details \code{interplot.plot} is a S3 method from the \code{interplot}. It generates plots of conditional coefficients.
#' 
#' Because the output function is based on \code{\link[ggplot2]{ggplot}}, any additional arguments and layers supported by \code{ggplot2} can be added with the \code{+}. 
#' 
#' \code{interplot} visualizes the conditional effect based on simulated marginal effects. The simulation provides a probabilistic distribution of moderation effect of the conditioning variable (\code{var2}) at every preset values (including the minimum and maximum values) of the conditioned variable (\code{var1}), denoted as Emin and Emax. This output allows the function to further examine the conditional effect statistically in two ways. One is to examine if the distribution of \eqn{Emax - Emin} covers zero. The other is to directly compare Emin and Emax through statistical tools for distributional comparisons. Users can choose either method by setting the argument \code{stats_cp} to "ci" or "ks".
#' \itemize{
#'   \item "ci" provides the confidence interval of the difference of \eqn{Emax - Emin}. An interval including 0 suggests no statistical difference before and after the conditional effect is applied, and vise versa.
#'   \item "ks" presents the result of a two-sample Kolmogorov-Smirnov test of the simulated distributions of Emin and Emax. The output includes a D statistics and a p-value of the null hypothesis that the two distributions come from the same distribution at the 0.05 level.
#' }
#' 
#' See an illustration in the package vignette.
#' 
#' @return The function returns a \code{ggplot} object.
#' 
#' @import  ggplot2
#' @importFrom graphics hist
#' @importFrom dplyr mutate
#' 
#' 
#' @export

## S3 method for class 'data.frame'
interplot.plot <- function(m,
           var1 = NULL,
           var2 = NULL,
           plot = TRUE,
           steps = NULL,
           ci = .95,
           adjCI = FALSE,
           hist = FALSE,
           var2_dt = NULL,
           predPro = FALSE,
           var2_vals = NULL,
           point = FALSE,
           sims = 5000,
           xmin = NA,
           xmax = NA,
           ercolor = NA,
           esize = 0.5,
           ralpha = 0.5,
           rfill = "grey70",
           stats_cp = "none",
           txt_caption = NULL,
           ci_diff = NULL,
           ks_diff = NULL,
           ...) {
    
  
  
  if (is.null(steps)) steps <- nrow(m)
  
  levels <- sort(unique(m$fake))
  ymin <- ymax <- vector() # to deal with the "no visible binding for global variable" issue
  xdiff <- vector() # to deal with the "no visible binding for global variable" issue
  test_cp <- vector() # to deal with the "no visible binding for global variable" issue
  
  if (predPro == TRUE) {
    if (is.null(m$value))
      stop("The input data.frame does not include required information.")
  }
  
  if (hist == FALSE) {
    if (steps < 5 | point == T) {
      if (is.na(ercolor)) ercolor <- "black"  # ensure whisker can be drawn
      if (predPro == TRUE) {
        coef.plot <- ggplot(m, aes(
            x = fake,
            y = coef1,
            group = value,
            colour = value
          )) + 
          geom_point(position = position_dodge(width = .3),...) + 
          geom_errorbar(
            aes(
              ymin = lb,
              ymax = ub,
              colour = value
            ),
            width = 0,
            position = position_dodge(width = .3),
            linewidth = esize
          ) + 
          scale_x_continuous(breaks = levels) + ylab(NULL) + xlab(NULL)
      } else{
        coef.plot <-
          ggplot(m, aes(x = fake, 
                               y = coef1)) + geom_point(...) +
          geom_errorbar(
            aes(ymin = lb, 
                       ymax = ub),
            width = 0,
            color = ercolor,
            size = esize
          ) + 
          scale_x_continuous(breaks = levels) + 
          ylab(NULL) + xlab(NULL)
      }
    } else {
      if (predPro == TRUE) {
        coef.plot <-
          ggplot(m, aes(
            x = fake,
            y = coef1,
            colour = value
          )) + 
          geom_line(...) + 
          geom_ribbon(aes(
            ymin = lb,
            ymax = ub,
            fill = value
          ), alpha = ralpha) + 
          ylab(NULL) + xlab(NULL)
      } else {
        coef.plot <-
          ggplot(m, aes(x = fake, 
                        y = coef1)) + 
          geom_line(...) + 
          geom_ribbon(
            aes(ymin = lb, 
                ymax = ub),
            alpha = ralpha,
            color = ercolor,
            fill = rfill
          ) + 
          ylab(NULL) + xlab(NULL)
      }
    }
    
    
    if (stats_cp == "ci") {
      test_cp <-
        if (is.list(ci_diff)) {
          test_cp <- "" # not paste ci_diff here but in `facet_grid` in `interplot_default`
        } else {
          paste0("CI(Max - Min): [",
                 round(ci_diff[1], digits = 3),
                 ", ",
                 round(ci_diff[2], digits = 3),
                 "]")
        }
    } else if (stats_cp == "ks") {
      test_cp <-
        paste0("(p-ks = ", format(round(ks_diff$p.value, digits = 3), nsmall = 3), ")")
    }
    
    coef.plot <- coef.plot +
      labs(caption = paste0(test_cp, txt_caption))
    
    return(coef.plot)
  } else {
    if (point == TRUE) {
      if (is.na(ercolor))
        ercolor <- "black"  # ensure whisker can be drawn
      
      yrange <- c(m$ub, m$lb, var2_dt)
      maxdiff <- (max(yrange) - min(yrange))
      
      break_var2 <- steps + 1
      if (break_var2 >= 100)
        break_var2 <- 100
      hist.out <-
        hist(var2_dt,
             breaks = seq(min(var2_dt), max(var2_dt), l = break_var2),
             plot = FALSE)
      
      n.hist <- length(hist.out$mids)
      
      if (steps < 10) {
        dist <- (hist.out$mids[2] - hist.out$mids[1]) / 3
      } else {
        dist <- hist.out$mids[2] - hist.out$mids[1]
      }
      hist.max <- max(hist.out$counts)
      
      if (steps < 10) {
        histX <- data.frame(
          ymin = rep(min(yrange) - maxdiff / 5, n.hist),
          ymax = hist.out$counts / hist.max * maxdiff /
            5 + min(yrange) - maxdiff / 5,
          xmin = sort(unique(var2_dt)) - dist / 2,
          xmax = sort(unique(var2_dt)) + dist / 2
        )
      } else {
        histX <- data.frame(
          ymin = rep(min(yrange) - maxdiff / 5, n.hist),
          ymax = hist.out$counts / hist.max * maxdiff /
            5 + min(yrange) - maxdiff / 5,
          xmin = hist.out$mids - dist / 2,
          xmax = hist.out$mids + dist / 2
        )
      }
      #when up to 10, the sort(unique(var2_dt)) - dist/2 leads to problemtic histogram
      
      
      if (steps < 10) {
        histX_sub <- histX
      } else {
        histX_sub <-
          mutate(histX, xdiff = xmax - xmin, xmax = xmax - xdiff / 2)
      }
      
      coef.plot <- ggplot()
      coef.plot <-
        coef.plot + geom_rect(
          data = histX,
          aes(
            xmin = xmin,
            xmax = xmax,
            ymin = ymin,
            ymax = ymax
          ),
          colour = "gray50",
          alpha = 0,
          size = 0.5
        )  #histgram
      
      if (predPro == TRUE) {
        coef.plot <-
          coef.plot + geom_errorbar(
            data = m,
            aes(
              x = fake,
              ymin = lb,
              ymax = ub,
              colour = value
            ),
            width = 0,
            size = esize
          ) + scale_x_continuous(breaks = levels) + 
          ylab(NULL) + xlab(NULL) + 
          geom_point(data = m,
                     aes(x = fake,
                         y = coef1,
                         colour = value))
      } else{
        coef.plot <-
          coef.plot + geom_errorbar(
            data = m,
            aes(
              x = fake,
              ymin = lb,
              ymax = ub
            ),
            width = 0,
            color = ercolor,
            size = esize
          ) + 
          scale_x_continuous(breaks = levels) + 
          ylab(NULL) + xlab(NULL) + 
          geom_point(data = m, 
                     aes(x = fake, 
                         y = coef1))
      }
    } else {
      yrange <- c(m$ub, m$lb)
      
      maxdiff <- (max(yrange) - min(yrange))
      
      break_var2 <- length(unique(var2_dt))
      if (break_var2 >= 100)
        break_var2 <- 100
      hist.out <-
        hist(var2_dt, breaks = break_var2, plot = FALSE)
      
      n.hist <- length(hist.out$mids)
      dist <- hist.out$mids[2] - hist.out$mids[1]
      hist.max <- max(hist.out$counts)
      
      histX <-
        data.frame(
          ymin = rep(min(yrange) - maxdiff / 5, n.hist),
          ymax = hist.out$counts / hist.max * maxdiff / 5 + min(yrange) - maxdiff /
            5,
          xmin = hist.out$mids - dist / 2,
          xmax = hist.out$mids + dist / 2
        )
      
      coef.plot <- ggplot()
      coef.plot <-
        coef.plot + geom_rect(
          data = histX,
          aes(
            xmin = xmin,
            xmax = xmax,
            ymin = ymin,
            ymax = ymax
          ),
          colour = "gray50",
          alpha = 0,
          size = 0.5
        )
      
      if (predPro == TRUE) {
        coef.plot <-
          coef.plot + 
          geom_line(data = m,
                    aes(x = fake,
                        y = coef1,
                        colour = value)) +
          geom_ribbon(data = m,
                      aes(
                        x = fake,
                        ymin = lb,
                        ymax = ub,
                        fill = value
                      ), 
            alpha = ralpha
          ) + ylab(NULL) + xlab(NULL)
      } else{
        coef.plot <-
          coef.plot + 
          geom_line(data = m,
                    aes(x = fake,
                        y = coef1)) + 
          geom_ribbon(
            data = m,
            aes(
              x = fake,
              ymin = lb,
              ymax = ub
            ),
            alpha = ralpha,
            color = ercolor,
            fill = rfill
          ) + 
          ylab(NULL) + xlab(NULL)
      }
    }
    
    if (stats_cp == "ci") {
      if (is.list(ci_diff)) {
        test_cp <- "" # not paste ci_diff here but in `facet_grid` in `interplot_default`
      } else {
        paste0("CI(Max - Min): [",
               round(ci_diff[1], digits = 3),
               ", ",
               round(ci_diff[2], digits = 3),
               "]")
      }
    } else if (stats_cp == "ks") {
      test_cp <-
        paste0("D(KS): ",
               ks_diff$statistic,
               "(p-value = ",
               format(round(ks_diff$p.value, digits = 3), nsmall = 3),
               ")")
    }
    
    coef.plot <- coef.plot +
      labs(caption = paste0(test_cp, txt_caption))
    
    return(coef.plot)
  }
  
} 
sammo3182/interplot documentation built on March 5, 2024, 9:23 a.m.