#' Cross-validated observed-data log-likelihood
#' This function returns the value of the observed-data log-likelihood based on cross-validation.
#' @param q Degree of the B-spline basis. Default is \code{q = 4} for a cubic B-spline basis.
#' @param sN Total number of B-spline basis functions. Defualt is \code{sN = 10} functions.
#' @param fold Column name with the assigned fold for cross-validation.
#' @param Y_unval Column name with the unvalidated outcome. If \code{Y_unval} is null, the outcome is assumed to be error-free.
#' @param Y_val Column name with the validated outcome.
#' @param X_unval Column name(s) with the unvalidated predictors. If \code{X_unval} and \code{X_val} are \code{null}, all precictors are assumed to be error-free.
#' @param X_val Column name(s) with the validated predictors. If \code{X_unval} and \code{X_val} are \code{null}, all precictors are assumed to be error-free.
#' @param C (Optional) Column name(s) with additional error-free covariates.
#' @param Validated Column name with the validation indicator. The validation indicator can be defined as \code{Validated = 1} or \code{TRUE} if the subject was validated and \code{Validated = 0} or \code{FALSE} otherwise.
#' @param data A dataframe with one row per subject containing columns: \code{Y_unval}, \code{Y_val}, \code{X_unval}, \code{X_val}, \code{C}, and \code{Validated}.
#' @param theta_pred Vector of columns in \code{data} that pertain to the predictors in the analysis model.
#' @param gamma_pred Vector of columns in \code{data} that pertain to the predictors in the outcome error model.
#' @param TOL Tolerance between iterations in the EM algorithm used to define convergence.
#' @param MAX_ITER Maximum number of iterations allowed in the EM algorithm.
#' @return scalar value of the function
#' @export
cv_observed_data_loglik <- function(q = 4, sN = 10, fold, Y_unval = NULL, Y_val = NULL, X_unval = NULL, X_val = NULL, C = NULL,
Validated = NULL, data, theta_pred = NULL, gamma_pred = NULL,
TOL = 1E-4, MAX_ITER = 1000) {
if (is.null(theta_pred)) { theta_pred <- c(X_val, C) }
if (is.null(gamma_pred) & !is.null(Y_unval)) { gamma_pred <- c(X_unval, Y_val, X_val, C) }
num_folds <- length(unique(data[, fold]))
status <- rep(TRUE, num_folds)
msg <- rep("", num_folds)
ll <- rep(NA, num_folds)
for (i in 1:num_folds) {
f <- unique(data[, fold])[i]
# Split training data
train <- data[which(data[, fold] != f), ]
# Place B-splines on the training data
if (is.null(C)) {
B <- splines::bs(x = data[, X_unval],
degree = (q - 1),
df = sN,
Boundary.knots = range(data[, X_unval]),
intercept = TRUE)
} else {
B <- matrix(0, nrow = nrow(data), ncol = sN)
split_sN <- round(mean(data[, C] == 0), 2)
B[which(data[, C] == 0), 1:(split_sN * sN)] <- splines::bs(x = data[which(data[, C] == 0), X_unval],
degree = deg,
df = split_sN * sN,
Boundary.knots = range(data[which(data[, C] == 0), X_unval]),
intercept = TRUE)
B[which(data[, C] == 1), (split_sN * sN + 1):sN] <- splines::bs(x = data[which(data[, C] == 1), X_unval],
degree = deg,
df = (1 - split_sN) * sN,
Boundary.knots = range(data[which(data[, C] == 1), X_unval]),
intercept = TRUE)
}
colnames(B) <- paste0("bs", 1:sN)
# Fit the SMLE to training data
suppressMessages(
train_fit <- logreg2ph(Y_unval = Y_unval, Y_val = Y_val, X_unval = X_unval, X_val = X_val, C = C,
Validated = Validated, Bspline = colnames(B), data = train,
theta_pred = theta_pred, gamma_pred = gamma_pred,
noSE = TRUE, TOL = TOL, MAX_ITER = MAX_ITER)
)
status[i] <- train_fit$converged
msg[i] <- train_fit$converged_msg
# Check for model fit, if TRUE proceed with calculating for test data
if (train_fit$converged) {
# Extract elements from SMLE fit to training data
train_theta <- train_fit$coeff$coeff
train_gamma <- train_fit$outcome_err_coeff$coeff
train_p <- train_fit$Bspline_coeff
train_x <- data.frame(train[train[, Validated] == 1, X_val])
train_x <- data.frame(train_x[order(train_x[, 1]), ])
colnames(train_x) <- X_val
train_x <- cbind(k = 1:nrow(train_x), train_x)
train_p <- merge(train_x, train_p)
# Split test data
test <- data[which(data[, fold] == f), ]
test_x <- data.frame(test[test[, Validated] == 1, X_val])
test_x <- data.frame(test_x[order(test_x[, 1]), ])
colnames(test_x) <- X_val
test_x <- cbind(k_ = 1:nrow(test_x), test_x)
test_p <- matrix(data = NA, nrow = nrow(test_x), ncol = ncol(colnames(B)))
for (i in 1:nrow(test_x)) {
x_ <- test_x[i, X_val]
bf <- suppressWarnings(expr = max(which(train_x[, X_val] <= x_)))
af <- suppressWarnings(expr = min(which(train_x[, X_val] >= x_)))
if (bf == -Inf) { bf <- af }
if (af == Inf) { af <- bf }
# x values immediately before/after
x0 <- train_p[bf, X_val]
x1 <- train_p[af, X_val]
# B-spline coefficients immediately before/after
p0 <- train_p[bf, -c(1:(1 + length(X_val)))]
p1 <- train_p[af, -c(1:(1 + length(X_val)))]
if (x1 == x0) {
test_p[i, ] <- unlist(p0)
} else {
test_p[i, ] <- unlist((p0 * (x1 - x_) + p1 * (x_ - x0)) / (x1 - x0))
}
}
# Recale columns of test_p to sum to 1
denom <- colSums(test_p)
denom[denom == 0] <- 1 # Avoid NaN error due to dividing by 0
re_test_p <- t(t(test_p) / denom)
# Construct complete dataset
cd <- complete_data(Y_unval = "Ystar", Y_val = "Y", X_unval = "Xbstar", X_val = "Xb", C = "Xa",
Validated = "V", Bspline = colnames(B), data = test)
ll_f <- observed_data_loglik(N = nrow(test), n = sum(test[, Validated]),
Y_unval = Y_unval, Y_val = Y_val, X_unval = X_unval, X_val = X_val, C = C,
Bspline = colnames(B), comp_dat_all = cd, theta_pred = theta_pred, gamma_pred = gamma_pred,
theta = train_theta, gamma = train_gamma, p = re_test_p)
ll[i] <- ll_f
}
}
return(list(loglik = ll, status = status, msg = msg))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.