Description Usage Arguments Value Examples
The function runs and evaluates gene function prediction based on the 
'guilt by association'-principle using neighbor voting (neighbor_voting)
[1]. As a measure of performance and significance of results, AUCs of all 
evaluated functional groups are calculated.
1  | 
network | 
 numeric array symmetric, gene-by-gene matrix  | 
labels | 
 numeric array  | 
min | 
 numeric value to limit gene function size  | 
max | 
 numeric value to limit gene function size  | 
nfold | 
 numeric value, default is 3  | 
list roc.sub, genes, auroc
1 2 3 4 5 6 7 8  | genes.labels <- matrix( sample( c(0,1), 1000, replace=TRUE), nrow=100)
rownames(genes.labels) = paste('gene', 1:100, sep='')
colnames(genes.labels) = paste('function', 1:10, sep='')
net <- cor( matrix( rnorm(10000), ncol=100), method='spearman')
rownames(net) <- paste('gene', 1:100, sep='')
colnames(net) <- paste('gene', 1:100, sep='')
gba <- run_GBA(net, genes.labels, min=10) 
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.