RunBanksy: Run Banksy on a Seurat Object

View source: R/banksy.R

RunBanksyR Documentation

Run Banksy on a Seurat Object

Description

Run Banksy on a Seurat Object

Usage

RunBanksy(
  object,
  lambda,
  assay = "RNA",
  slot = "data",
  use_agf = FALSE,
  dimx = NULL,
  dimy = NULL,
  dimz = NULL,
  ndim = 2,
  features = "variable",
  group = NULL,
  split.scale = TRUE,
  k_geom = 15,
  n = 2,
  sigma = 1.5,
  alpha = 0.05,
  k_spatial = 10,
  spatial_mode = "kNN_median",
  assay_name = "BANKSY",
  M = NULL,
  verbose = TRUE
)

Arguments

object

A Seurat object

lambda

(numeric) Spatial weight parameter

assay

(character) Assay in Seurat object to use

slot

(character) Slot in Seurat assay to use

use_agf

(boolean) Whether to use the AGF

dimx

(character) Column name of spatial x dimension (must be in metadata)

dimy

(character) Column name of spatial y dimension (must be in metadata)

dimz

(character) Column name of spatial z dimension (must be in metadata)

ndim

(integer) Number of spatial dimensions to extract

features

(character) Features to compute. Can be 'all', 'variable' or a vector of feature names

group

(character) Column name of a grouping variable (must be in metadata)

split.scale

(boolean) Whether to separate scaling by group

k_geom

(numeric) kNN parameter - number of neighbors to use

n

(numeric) kNN_rn parameter - exponent of radius

sigma

(numeric) rNN parameter - standard deviation of Gaussian kernel

alpha

(numeric) rNN parameter - determines radius used

k_spatial

(numeric) rNN parameter - number of neighbors to use

spatial_mode

(character) Kernel for neighborhood computation

  • kNN_median: k-nearest neighbors with median-scaled Gaussian kernel

  • kNN_r: k-nearest neighbors with $1/r$ kernel

  • kNN_rn: k-nearest neighbors with $1/r^n$ kernel

  • kNN_rank: k-nearest neighbors with rank Gaussian kernel

  • kNN_unif: k-nearest neighbors wth uniform kernel

  • rNN_gauss: radial nearest neighbors with Gaussian kernel

assay_name

(character) Name for Banksy assay in Seurat object

M

(numeric) Advanced usage. Highest azimuthal harmonic

verbose

(boolean) Print messages

Value

A Seurat object with new assay holding a Banksy matrix

Author(s)

Joseph Lee, Vipul Singhal

References

Vipul Singhal, Nigel Chou et. al. BANKSY: A Spatial Omics Algorithm that Unifies Cell Type Clustering and Tissue Domain Segmentation

See Also

ComputeBanksy


satijalab/seurat-wrappers documentation built on April 10, 2024, 3:25 p.m.