| RunALRA | R Documentation | 
Runs ALRA, a method for imputation of dropped out values in scRNA-seq data. Computes the k-rank approximation to A_norm and adjusts it according to the error distribution learned from the negative values. Described in Linderman, G. C., Zhao, J., Kluger, Y. (2018). "Zero-preserving imputation of scRNA-seq data using low rank approximation." (bioRxiv:138677)
RunALRA(object, ...)
## Default S3 method:
RunALRA(
  object,
  k = NULL,
  q = 10,
  quantile.prob = 0.001,
  use.mkl = FALSE,
  mkl.seed = -1,
  ...
)
## S3 method for class 'Seurat'
RunALRA(
  object,
  k = NULL,
  q = 10,
  quantile.prob = 0.001,
  use.mkl = FALSE,
  mkl.seed = -1,
  assay = NULL,
  slot = "data",
  setDefaultAssay = TRUE,
  genes.use = NULL,
  K = NULL,
  thresh = 6,
  noise.start = NULL,
  q.k = 2,
  k.only = FALSE,
  ...
)
object | 
 An object  | 
... | 
 Arguments passed to other methods  | 
k | 
 The rank of the rank-k approximation. Set to NULL for automated choice of k.  | 
q | 
 The number of additional power iterations in randomized SVD when computing rank k approximation. By default, q=10.  | 
quantile.prob | 
 The quantile probability to use when calculating threshold. By default, quantile.prob = 0.001.  | 
use.mkl | 
 Use the Intel MKL based implementation of SVD. Needs to be installed from https://github.com/KlugerLab/rpca-mkl.  | 
mkl.seed | 
 Only relevant if use.mkl=T. Set the seed for the random generator for the Intel MKL implementation of SVD. Any number <0 will use the current timestamp. If use.mkl=F, set the seed using set.seed() function as usual.  | 
assay | 
 Assay to use  | 
slot | 
 slot to use  | 
setDefaultAssay | 
 If TRUE, will set imputed results as default Assay  | 
genes.use | 
 genes to impute  | 
K | 
 Number of singular values to compute when choosing k. Must be less than the smallest dimension of the matrix. Default 100 or smallest dimension.  | 
noise.start | 
 Index for which all smaller singular values are considered noise. Default K - 20.  | 
q.k | 
 Number of additional power iterations when choosing k. Default 2.  | 
k.only | 
 If TRUE, only computes optimal k WITHOUT performing ALRA  | 
p.val.th | 
 The threshold for ”significance” when choosing k. Default 1e-10.  | 
Jun Zhao, George Linderman
Linderman, G. C., Zhao, J., Kluger, Y. (2018). "Zero-preserving imputation of scRNA-seq data using low rank approximation." (bioRxiv:138677)
ALRAChooseKPlot
## Not run: 
pbmc_small
# Example 1: Simple usage, with automatic choice of k.
pbmc_small_alra <- RunALRA(object = pbmc_small)
# Example 2: Visualize choice of k, then run ALRA
# First, choose K
pbmc_small_alra <- RunALRA(pbmc_small, k.only=TRUE)
# Plot the spectrum, spacings, and p-values which are used to choose k
ggouts <- ALRAChooseKPlot(pbmc_small_alra)
do.call(gridExtra::grid.arrange, c(ggouts, nrow=1))
# Run ALRA with the chosen k
pbmc_small_alra <- RunALRA(pbmc_small_alra)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.