RunALRA | R Documentation |
Runs ALRA, a method for imputation of dropped out values in scRNA-seq data. Computes the k-rank approximation to A_norm and adjusts it according to the error distribution learned from the negative values. Described in Linderman, G. C., Zhao, J., Kluger, Y. (2018). "Zero-preserving imputation of scRNA-seq data using low rank approximation." (bioRxiv:138677)
RunALRA(object, ...)
## Default S3 method:
RunALRA(
object,
k = NULL,
q = 10,
quantile.prob = 0.001,
use.mkl = FALSE,
mkl.seed = -1,
...
)
## S3 method for class 'Seurat'
RunALRA(
object,
k = NULL,
q = 10,
quantile.prob = 0.001,
use.mkl = FALSE,
mkl.seed = -1,
assay = NULL,
slot = "data",
setDefaultAssay = TRUE,
genes.use = NULL,
K = NULL,
thresh = 6,
noise.start = NULL,
q.k = 2,
k.only = FALSE,
...
)
object |
An object |
... |
Arguments passed to other methods |
k |
The rank of the rank-k approximation. Set to NULL for automated choice of k. |
q |
The number of additional power iterations in randomized SVD when computing rank k approximation. By default, q=10. |
quantile.prob |
The quantile probability to use when calculating threshold. By default, quantile.prob = 0.001. |
use.mkl |
Use the Intel MKL based implementation of SVD. Needs to be installed from https://github.com/KlugerLab/rpca-mkl. |
mkl.seed |
Only relevant if use.mkl=T. Set the seed for the random generator for the Intel MKL implementation of SVD. Any number <0 will use the current timestamp. If use.mkl=F, set the seed using set.seed() function as usual. |
assay |
Assay to use |
slot |
slot to use |
setDefaultAssay |
If TRUE, will set imputed results as default Assay |
genes.use |
genes to impute |
K |
Number of singular values to compute when choosing k. Must be less than the smallest dimension of the matrix. Default 100 or smallest dimension. |
noise.start |
Index for which all smaller singular values are considered noise. Default K - 20. |
q.k |
Number of additional power iterations when choosing k. Default 2. |
k.only |
If TRUE, only computes optimal k WITHOUT performing ALRA |
p.val.th |
The threshold for ”significance” when choosing k. Default 1e-10. |
Jun Zhao, George Linderman
Linderman, G. C., Zhao, J., Kluger, Y. (2018). "Zero-preserving imputation of scRNA-seq data using low rank approximation." (bioRxiv:138677)
ALRAChooseKPlot
## Not run:
pbmc_small
# Example 1: Simple usage, with automatic choice of k.
pbmc_small_alra <- RunALRA(object = pbmc_small)
# Example 2: Visualize choice of k, then run ALRA
# First, choose K
pbmc_small_alra <- RunALRA(pbmc_small, k.only=TRUE)
# Plot the spectrum, spacings, and p-values which are used to choose k
ggouts <- ALRAChooseKPlot(pbmc_small_alra)
do.call(gridExtra::grid.arrange, c(ggouts, nrow=1))
# Run ALRA with the chosen k
pbmc_small_alra <- RunALRA(pbmc_small_alra)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.