rm(list=ls()) reticulate::use_python("/Users/sfurla/.virtualenvs/py3/bin/python", required = T) library(reticulate) reticulate::py_config() py_available("backspin") py_available("trimap") py_available("scrublet") # py_install("trimap", envname = "py3") # py_install("sklearn", envname = "py3") # py_install("scikit-learn", envname = "py3")
import sklearn import trimap from sklearn.datasets import load_digits digits = load_digits() dat = digits.data embedding = trimap.TRIMAP(n_inliers=20, n_outliers=10, n_random=10, weight_adj=1000.0).fit_transform(dat)
library(ggplot2) umap<-as.data.frame(uwot::umap(py$dat)) colnames(umap)<-c("x", "y") umap$col<-as.factor(py$digits$target) emb<-as.data.frame(py$embedding) colnames(emb)<-c("x", "y") emb$col<-as.factor(py$digits$target) ggplot(emb, aes(x=x, y=y, color=col))+geom_point()+theme_bw()+ggtitle("trimap") ggplot(umap, aes(x=x, y=y, color=col))+geom_point()+theme_bw()+ggtitle("umap") reticulate::use_python("/Users/sfurla/.virtualenvs/py3/bin/python", required = T) py_module_available("trimap") suppressPackageStartupMessages({ library(monocle3) library(m3addon) library(reticulate) library(openxlsx) library(dplyr) library(Matrix) library(ggplot2) #library(rhdf5) library(h5) library(xfun) library(pals) library(RColorBrewer) library(piano) library(GSEABase) library(data.table) }) ROOT_DIR="/Users/sfurla/Box Sync/PI_FurlanS/computation" CDS_DIR <- file.path(ROOT_DIR, "Analysis", "NHPTreg_mm", "cds", "4thRound") cds <- readRDS(file.path(CDS_DIR, "190820_m3_CDS.RDS")) mix_S <-readRDS(file.path(CDS_DIR, "cds_Day3Day20andTregs_NaiveEffGenes.RDS")) pData(cds)$UMAP_Clust<-NA pData(cds)$UMAP_Clust[match(colnames(mix_S), colnames(cds))]<-as.character(mix_S@phenoData@data$Cluster_Lab) pData(cds)$UMAP_1<-NA pData(cds)$UMAP_2<-NA pData(cds)$UMAP_1[match(colnames(mix_S), colnames(cds))]<-t(mix_S@reducedDimA)[,1] pData(cds)$UMAP_2[match(colnames(mix_S), colnames(cds))]<-t(mix_S@reducedDimA)[,2] cds_S<-cds[,!is.na(pData(cds)$UMAP_Clust)] cds_S<-cds_S[,match(colnames(cds_S),colnames(mix_S))] reducedDims(cds_S)[["UMAP"]]<-cbind(pData(cds_S)$UMAP_1, pData(cds_S)$UMAP_2) rm(cds, mix_S) #source_python(file.path("/Users/sfurla/Box Sync/PI_FurlanS/computation/Rproj/m3addon/inst/trimap.py")) plot_cells(cds_S, color_cells_by = "UMAP_Clust", reduction_method = "UMAP", label_cell_groups = F, cell_size = 0.7) #X<-t(as.matrix(exprs(cds_S))) #debug(trimap) plot_pc_variance_explained(cds_S) cds<-trimap(cds_S, num_dims = 10) plot_cells(cds_S, color_cells_by = "Category", reduction_method = "trimap", label_cell_groups = F, cell_size = 0.7)
def trimap_fromR(data, n_dims, n_inliers, n_outliers, n_random, distance, lr, n_iters, knn_tuple, apply_pca, opt_method, verbose, weight_adj, return_seq): import trimap knn_tuple=None embedding = trimap.TRIMAP(n_dims = int(n_dims), n_inliers = int(n_inliers), n_outliers = int(n_outliers), n_random = int(n_random), distance = str(distance), lr = float(lr), n_iters = int(n_iters), apply_pca = bool(apply_pca),opt_method = str(opt_method), verbose = bool(verbose), weight_adj = float(weight_adj), return_seq = bool(return_seq)).fit_transform(data) return(embedding)
#reticulate::virtualenv_create(envname = "solo", python="/usr/local/bin/python3") reticulate::use_python("/Users/sfurla/.virtualenvs/solo/bin/python3", required = T) library(reticulate) reticulate::py_config() py_module_available("solo") py_install("/Users/sfurla/develop/solo") suppressPackageStartupMessages({ library(monocle3) library(m3addon) library(reticulate) library(openxlsx) library(dplyr) library(Matrix) library(ggplot2) #library(rhdf5) library(h5) library(xfun) library(pals) library(RColorBrewer) library(piano) library(GSEABase) library(data.table) library(Seurat) }) cds<-readRDS("/Users/sfurla/Box Sync/PI_FurlanS/computation/Analysis/KpOxCy/cds/191208_DoubletsCalled4methods.RDS") og<-cds@int_metadata$dispersion$gene_short_name[cds@int_metadata$dispersion$use_for_ordering] X<-as.matrix(exprs(cds[rownames(cds) %in% og,cds$group %in% "15w_CAR_Alone"])) Xs<-t(X[,sample(1:dim(X)[2], 350)]) #dim(Xs) #write.csv(X, file.path("/Users/sfurla/Box Sync/PI_FurlanS/computation/Rproj/m3addon/testdata.csv")) #source_python(file.path("/Users/sfurla/Box Sync/PI_FurlanS/computation/Rproj/m3addon/inst/solo.py")) cn<-colnames(Xs) #solo(Xs, cn)
X = r[["Xs"]] gene_names = r[["cn"]] doublet_depth=2.0 gpu=False out_dir ='solo_out' doublet_ratio=2.0 seed=None known_doublets=None doublet_type='multinomial' expected_number_of_doublets=None plot=False normal_logging=False n_hidden = 128 n_latent = 16 cl_hidden= 64 cl_layers = 1 dropout_rate = 0.1 learning_rate=0.001 valid_pct=0.1 from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter import json import os import shutil import anndata import numpy as np from anndata import AnnData from sklearn.metrics import roc_auc_score, roc_curve from scipy.sparse import issparse from collections import defaultdict import scvi from scvi.dataset import AnnDatasetFromAnnData, LoomDataset, GeneExpressionDataset from scvi.models import Classifier, VAE from scvi.inference import UnsupervisedTrainer, ClassifierTrainer import torch from solo.utils import create_average_doublet, create_summed_doublet, create_multinomial_doublet, make_gene_expression_dataset if not normal_logging: scvi._settings.set_verbosity(10) if gpu and not torch.cuda.is_available(): gpu = torch.cuda.is_available() print('Cuda is not available, switching to cpu running!') # if not os.path.isdir(out_dir): # os.mkdir(out_dir) # data_ext = os.path.splitext(data_file)[-1] # if data_ext == '.loom': # scvi_data = LoomDataset(data_file) # elif data_ext == '.h5ad': # scvi_data = AnnDatasetFromAnnData(anndata.read(data_file)) # else: # msg = f'{data_ext} is not a recognized format.\n' # msg += 'must be one of {h5ad, loom}' # raise TypeError(msg) # if issparse(scvi_data.X): # scvi_data.X = scvi_data.X.todense() scvi_data = make_gene_expression_dataset(X, gene_names) num_cells, num_genes = scvi_data.X.shape if known_doublets is not None: print('Removing known doublets for in silico doublet generation') print('Make sure known doublets are in the same order as your data') known_doublets = np.loadtxt(known_doublets, dtype=str) == 'True' assert len(known_doublets) == scvi_data.X.shape[0] known_doublet_data = make_gene_expression_dataset( scvi_data.X[known_doublets], scvi_data.gene_names) known_doublet_data.labels = np.ones(known_doublet_data.X.shape[0]) singlet_scvi_data = make_gene_expression_dataset( scvi_data.X[~known_doublets], scvi_data.gene_names) singlet_num_cells, _ = singlet_scvi_data.X.shape else: known_doublet_data = None singlet_num_cells = num_cells known_doublets = np.zeros(num_cells, dtype=bool) singlet_scvi_data = scvi_data singlet_scvi_data.labels = np.zeros(singlet_scvi_data.X.shape[0]) scvi_data.labels = known_doublets.astype(int) params = { "n_hidden": n_hidden, "n_latent": n_latent, "cl_hidden": cl_hidden, "cl_layers": cl_layers, "dropout_rate": dropout_rate, "learning_rate": learning_rate, "valid_pct": valid_pct } # set VAE params vae_params = {} for par in ['n_hidden', 'n_latent', 'n_layers', 'dropout_rate', 'ignore_batch']: if par in params: vae_params[par] = params[par] vae_params['n_batch'] = 0 if params.get( 'ignore_batch', False) else scvi_data.n_batches # training parameters valid_pct = params.get('valid_pct', 0.1) learning_rate = params.get('learning_rate', 1e-3) stopping_params = {'patience': params.get('patience', 10), 'threshold': 0} ################################################## # VAE vae = VAE(n_input=singlet_scvi_data.nb_genes, n_labels=2, reconstruction_loss='nb', log_variational=True, **vae_params) if seed: if gpu: device = torch.device('cuda') vae.load_state_dict(torch.load(os.path.join(seed, 'vae.pt'))) vae.to(device) else: map_loc = 'cpu' vae.load_state_dict(torch.load(os.path.join(seed, 'vae.pt'), map_location=map_loc)) # copy latent representation latent_file = os.path.join(seed, 'latent.npy') if os.path.isfile(latent_file): shutil.copy(latent_file, os.path.join(out_dir, 'latent.npy')) else: stopping_params['early_stopping_metric'] = 'reconstruction_error' stopping_params['save_best_state_metric'] = 'reconstruction_error' # initialize unsupervised trainer utrainer = UnsupervisedTrainer(vae, singlet_scvi_data, train_size=(1. - valid_pct), frequency=2, metrics_to_monitor=['reconstruction_error'], use_cuda=gpu, early_stopping_kwargs=stopping_params) utrainer.history['reconstruction_error_test_set'].append(0) # initial epoch utrainer.train(n_epochs=2000, lr=learning_rate) # drop learning rate and continue utrainer.early_stopping.wait = 0 utrainer.train(n_epochs=500, lr=0.5 * learning_rate) # save VAE torch.save(vae.state_dict(), os.path.join(out_dir, 'vae.pt')) # save latent representation full_posterior = utrainer.create_posterior( utrainer.model, singlet_scvi_data, indices=np.arange(len(singlet_scvi_data))) latent, _, _ = full_posterior.sequential().get_latent() np.save(os.path.join(out_dir, 'latent.npy'), latent.astype('float32')) ################################################## # simulate doublets non_zero_indexes = np.where(singlet_scvi_data.X > 0) cells = non_zero_indexes[0] genes = non_zero_indexes[1] cells_ids = defaultdict(list) for cell_id, gene in zip(cells, genes): cells_ids[cell_id].append(gene) # choose doublets function type if doublet_type == 'average': doublet_function = create_average_doublet elif doublet_type == 'sum': doublet_function = create_summed_doublet else: doublet_function = create_multinomial_doublet cell_depths = singlet_scvi_data.X.sum(axis=1) num_doublets = int(doublet_ratio * singlet_num_cells) if known_doublet_data is not None: num_doublets -= known_doublet_data.X.shape[0] # make sure we are making a non negative amount of doublets assert num_doublets >= 0 in_silico_doublets = np.zeros((num_doublets, num_genes), dtype='float32') # for desired # doublets for di in range(num_doublets): # sample two cells i, j = np.random.choice(singlet_num_cells, size=2) # generate doublets in_silico_doublets[di, :] = \ doublet_function(singlet_scvi_data.X, i, j, doublet_depth=doublet_depth, cell_depths=cell_depths, cells_ids=cells_ids) # merge datasets # we can maybe up sample the known doublets # concatentate classifier_data = GeneExpressionDataset() classifier_data.populate_from_data( X=np.vstack([scvi_data.X, in_silico_doublets]), labels=np.hstack([np.ravel(scvi_data.labels), np.ones(in_silico_doublets.shape[0])]), remap_attributes=False) assert(len(np.unique(classifier_data.labels.flatten())) == 2) ################################################## # classifier # model classifier = Classifier(n_input=(vae.n_latent + 1), n_hidden=params['cl_hidden'], n_layers=params['cl_layers'], n_labels=2, dropout_rate=params['dropout_rate']) # trainer stopping_params['early_stopping_metric'] = 'accuracy' stopping_params['save_best_state_metric'] = 'accuracy' strainer = ClassifierTrainer(classifier, classifier_data, train_size=(1. - valid_pct), frequency=2, metrics_to_monitor=['accuracy'], use_cuda=gpu, sampling_model=vae, sampling_zl=True, early_stopping_kwargs=stopping_params) # initial strainer.train(n_epochs=1000, lr=learning_rate) # drop learning rate and continue strainer.early_stopping.wait = 0 strainer.train(n_epochs=300, lr=0.1 * learning_rate) torch.save(classifier.state_dict(), os.path.join(out_dir, 'classifier.pt')) ################################################## # post-processing # use logits for predictions for better results logits_classifier = Classifier(n_input=(vae.n_latent + 1), n_hidden=params['cl_hidden'], n_layers=params['cl_layers'], n_labels=2, dropout_rate=params['dropout_rate'], logits=True) logits_classifier.load_state_dict(classifier.state_dict()) # using logits leads to better performance in for ranking logits_strainer = ClassifierTrainer(logits_classifier, classifier_data, train_size=(1. - valid_pct), frequency=2, metrics_to_monitor=['accuracy'], use_cuda=gpu, sampling_model=vae, sampling_zl=True, early_stopping_kwargs=stopping_params) # models evaluation mode vae.eval() classifier.eval() logits_classifier.eval() print('Train accuracy: %.4f' % strainer.train_set.accuracy()) print('Test accuracy: %.4f' % strainer.test_set.accuracy()) # compute predictions manually # output logits train_y, train_score = strainer.train_set.compute_predictions(soft=True) test_y, test_score = strainer.test_set.compute_predictions(soft=True) # train_y == true label # train_score[:, 0] == singlet score; train_score[:, 1] == doublet score train_score = train_score[:, 1] train_y = train_y.astype('bool') test_score = test_score[:, 1] test_y = test_y.astype('bool') train_auroc = roc_auc_score(train_y, train_score) test_auroc = roc_auc_score(test_y, test_score) print('Train AUROC: %.4f' % train_auroc) print('Test AUROC: %.4f' % test_auroc) train_fpr, train_tpr, train_t = roc_curve(train_y, train_score) test_fpr, test_tpr, test_t = roc_curve(test_y, test_score) train_t = np.minimum(train_t, 1 + 1e-9) test_t = np.minimum(test_t, 1 + 1e-9) train_acc = np.zeros(len(train_t)) for i in range(len(train_t)): train_acc[i] = np.mean(train_y == (train_score > train_t[i])) test_acc = np.zeros(len(test_t)) for i in range(len(test_t)): test_acc[i] = np.mean(test_y == (test_score > test_t[i])) # write predictions # softmax predictions order_y, order_score = strainer.compute_predictions(soft=True) _, order_pred = strainer.compute_predictions() doublet_score = order_score[:, 1] np.save(os.path.join(out_dir, 'softmax_scores.npy'), doublet_score[:num_cells]) np.save(os.path.join(out_dir, 'softmax_scores_sim.npy'), doublet_score[num_cells:]) # logit predictions logit_y, logit_score = logits_strainer.compute_predictions(soft=True) logit_doublet_score = logit_score[:, 1] np.save(os.path.join(out_dir, 'logit_scores.npy'), logit_doublet_score[:num_cells]) np.save(os.path.join(out_dir, 'logit_scores_sim.npy'), logit_doublet_score[num_cells:]) if expected_number_of_doublets is not None: solo_scores = doublet_score[:num_cells] k = len(solo_scores) - expected_number_of_doublets if expected_number_of_doublets / len(solo_scores) > .5: print('Make sure you actually expect more than half your cells to be doublets. If not change your -e parameter value') assert k > 0 idx = np.argpartition(solo_scores, k) threshold = np.max(solo_scores[idx[:k]]) is_solo_doublet = doublet_score > threshold else: is_solo_doublet = order_pred[:num_cells] is_doublet = known_doublets new_doublets_idx = np.where(~(is_doublet) & is_solo_doublet[:num_cells])[0] is_doublet[new_doublets_idx] = True np.save(os.path.join(out_dir, 'is_doublet.npy'), is_doublet[:num_cells]) np.save(os.path.join(out_dir, 'is_doublet_sim.npy'), is_doublet[num_cells:]) np.save(os.path.join(out_dir, 'preds.npy'), order_pred[:num_cells]) np.save(os.path.join(out_dir, 'preds_sim.npy'), order_pred[num_cells:]) if plot: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import seaborn as sns # plot ROC plt.figure() plt.plot(train_fpr, train_tpr, label='Train') plt.plot(test_fpr, test_tpr, label='Test') plt.gca().set_xlabel('False positive rate') plt.gca().set_ylabel('True positive rate') plt.legend() plt.savefig(os.path.join(out_dir, 'roc.pdf')) plt.close() # plot accuracy plt.figure() plt.plot(train_t, train_acc, label='Train') plt.plot(test_t, test_acc, label='Test') plt.axvline(0.5, color='black', linestyle='--') plt.gca().set_xlabel('Threshold') plt.gca().set_ylabel('Accuracy') plt.legend() plt.savefig(os.path.join(out_dir, 'accuracy.pdf')) plt.close() # plot distributions plt.figure() sns.distplot(test_score[test_y], label='Simulated') sns.distplot(test_score[~test_y], label='Observed') plt.legend() plt.savefig(os.path.join(out_dir, 'train_v_test_dist.pdf')) plt.close() plt.figure() sns.distplot(doublet_score[:num_cells], label='Simulated') plt.legend() plt.savefig(os.path.join(out_dir, 'real_cells_dist.pdf')) plt.close()
import pandas as pd import anndata import solo from solo.utils import create_average_doublet, create_summed_doublet, create_multinomial_doublet, make_gene_expression_dataset rn=pd.read_csv("/Users/sfurla/Box Sync/PI_FurlanS/computation/Rproj/m3addon/testdata.csv") rn=list(rn[rn.columns[0]]) d=anndata.read_csv("/Users/sfurla/Box Sync/PI_FurlanS/computation/Rproj/m3addon/testdata.csv") scvi_data = make_gene_expression_dataset(d.X.transpose(), gene_names=rn)
rm(list=ls()) #reticulate::virtualenv_create(envname = "solo", python="/usr/local/bin/python3") reticulate::use_python("/Users/sfurla/.virtualenvs/py3/bin/python3", required = T) library(reticulate) reticulate::py_config() py_module_available("trimap") #py_install("/Users/sfurla/develop/solo") py_config() suppressPackageStartupMessages({ library(monocle3) library(m3addon) library(reticulate) library(openxlsx) library(dplyr) library(Matrix) library(ggplot2) #library(rhdf5) library(h5) library(xfun) library(pals) library(RColorBrewer) library(piano) library(GSEABase) library(data.table) library(Seurat) }) cds<-readRDS("/Users/sfurla/Box Sync/PI_FurlanS/computation/Analysis/KpOxCy/cds/191208_DoubletsCalled4methods.RDS") plot_pc_variance_explained(cds) debug(trimap) cds<-trimap(cds, num_dims = 30) plot_cells(cds, color_cells_by = "group", reduction_method = "trimap", label_cell_groups = F, cell_size = 0.7) plot_cells(cds, gene="Nos2", reduction_method = "trimap", label_cell_groups = F, cell_size = 0.7)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.