R/graphs.R

Defines functions split_graph graph_kpartite graph_from_multi_edgelist bipartite_from_data_frame

Documented in bipartite_from_data_frame graph_from_multi_edgelist graph_kpartite split_graph

#' @title two-mode network from a data.frame
#' @description Create a two-mode network from a data.frame
#'
#' @param d data.frame
#' @param type1 column name of mode 1
#' @param type2 column name of mode 2
#' @param attr named list of edge attributes
#' @param weighted should a weighted graph be created if multiple edges occur
#' @return two mode network as igraph object
#' @author David Schoch
#' @examples
#' library(igraph)
#' edges <- data.frame(mode1 = 1:5, mode2 = letters[1:5])
#' bipartite_from_data_frame(edges, "mode1", "mode2")
#' @export

bipartite_from_data_frame <- function(d, type1, type2, attr = NULL, weighted = TRUE) {
    if (!type1 %in% names(d)) {
        stop(paste0("no column named ", type1, " found in data frame"))
    }
    if (!type2 %in% names(d)) {
        stop(paste0("no column named ", type2, " found in data frame"))
    }

    mode1 <- unique(d[[type1]])
    mode2 <- unique(d[[type2]])
    if (any(mode1 %in% mode2)) {
        stop("some nodes appear in both modes. Modes in a two-mode network must be distinct.")
    }
    el <- cbind(d[[type1]], d[[type2]])

    g <- igraph::graph.empty(directed = FALSE)
    g <- igraph::add_vertices(g, nv = length(mode1), attr = list(name = mode1, type = TRUE))
    g <- igraph::add_vertices(g, nv = length(mode2), attr = list(name = mode2, type = FALSE))
    if (!is.null(attr)) {
        g <- igraph::add_edges(g, c(t(el)), attr = attr)
    } else {
        g <- igraph::add_edges(g, c(t(el)))
    }
    if (igraph::any_multiple(g) && weighted) {
        igraph::E(g)$weight <- 1
        g <- igraph::simplify(g,
            remove.multiple = TRUE,
            remove.loops = TRUE,
            edge.attr.comb = "sum"
        )
    }
    g
}

#' @title Multiple networks from a single edgelist with a typed attribute
#' @description Create a list of igraph objects from an edgelist according to a type attribute
#'
#' @param d data frame.
#' @param from column name of sender. If NULL, defaults to first column.
#' @param to column of receiver. If NULL, defaults to second column.
#' @param type type attribute to split the edgelist. If NULL, defaults to third column.
#' @param weight optional column name of edge weights. Ignored if NULL.
#' @param directed logical scalar, whether or not to create a directed graph.
#' @return list of igraph objects.
#' @author David Schoch
#' @examples
#' library(igraph)
#' d <- data.frame(
#'     from = rep(c(1, 2, 3), 3), to = rep(c(2, 3, 1), 3),
#'     type = rep(c("a", "b", "c"), each = 3), weight = 1:9
#' )
#' graph_from_multi_edgelist(d, "from", "to", "type", "weight")
#' @export

graph_from_multi_edgelist <- function(d, from = NULL, to = NULL, type = NULL, weight = NULL, directed = FALSE) {
    d <- as.data.frame(d)
    if (ncol(d) < 2) {
        stop("the data frame should contain at least three columns")
    }
    dnames <- names(d)

    if (is.null(from)) {
        from <- dnames[1]
    }
    if (is.null(to)) {
        to <- dnames[2]
    }
    if (is.null(type)) {
        type <- dnames[3]
    }
    if (is.null(weight)) {
        d <- d[, c(from, to, type)]
    } else {
        d <- d[, c(from, to, weight, type)]
    }

    if (!from %in% dnames) {
        stop(paste0(from, " is not a valid column name"))
    }
    if (!to %in% dnames) {
        stop(paste0(to, " is not a valid column name"))
    }
    if (!type %in% dnames) {
        stop(paste0(type, " is not a valid column name"))
    }

    d_lst <- split(d, d[[type]])
    g_lst <- lapply(d_lst, function(x) igraph::graph_from_data_frame(x, directed = directed))
    g_lst
}

#' @title k partite graphs
#' @description  Create a random k-partite graph.
#'
#' @param n number of nodes
#' @param grp vector of partition sizes
#' @return igraph object
#' @author David Schoch
#' @examples
#' # 3-partite graph with equal sized groups
#' graph_kpartite(n = 15, grp = c(5, 5, 5))
#' @export

graph_kpartite <- function(n = 10, grp = c(5, 5)) {
    g <- igraph::graph.empty(n = n, directed = FALSE)
    cur_node <- 1
    nodes <- 1:n
    for (i in 1:(length(grp) - 1)) {
        add_nodes <- cur_node:(cur_node + grp[i] - 1)
        add_edges <- c(t(expand.grid(add_nodes, nodes[nodes > max(add_nodes)])))
        g <- igraph::add_edges(g, add_edges)
        cur_node <- cur_node + grp[i]
    }
    return(g)
}

#' @title split graph
#' @description  Create a random split graph with a perfect core-periphery structure.
#'
#' @param n number of nodes
#' @param p probability of peripheral nodes to connect to the core nodes
#' @param core fraction of nodes in the core
#' @return igraph object
#' @author David Schoch
#' @examples
#' # split graph with 20 nodes and a core size of 10
#' split_graph(n = 20, p = 0.4, 0.5)
#' @export
split_graph <- function(n, p, core) {
    ncore <- floor(n * core)
    nperi <- n - ncore
    Acore <- matrix(1, ncore, ncore)
    Aperi <- (matrix(stats::runif(ncore * nperi), ncore, nperi) < p) + 0
    A <- rbind(cbind(Acore, Aperi), cbind(t(Aperi), matrix(0, nperi, nperi)))
    g <- igraph::graph_from_adjacency_matrix(A, "undirected", diag = FALSE)
    igraph::V(g)$core <- FALSE
    igraph::V(g)$core[1:ncore] <- TRUE
    g
}
schochastics/netUtils documentation built on Oct. 17, 2024, 10:45 a.m.