plot_model_fits: Plots infection histories and antibody model

View source: R/plot_antibody_model.R

plot_model_fitsR Documentation

Plots infection histories and antibody model

Description

Given outputs from an MCMC run and the data used for fitting, generates an NxM matrix of plots where N is the number of individuals to be plotted and M is the range of sampling times. Where data are available, plots the observed antibody measurements and model predicted trajectories. Unlike plot_infection_histories_cross_sectional, places biomarker\_id on the x-axis and facets by sample time and individual.

Usage

plot_model_fits(
  chain,
  infection_histories,
  antibody_data = NULL,
  demographics = NULL,
  individuals,
  par_tab = NULL,
  antigenic_map = NULL,
  possible_exposure_times = NULL,
  nsamp = 1000,
  known_infection_history = NULL,
  measurement_bias = NULL,
  p_ncol = max(1, floor(length(individuals)/2)),
  data_type = 1,
  expand_to_all_times = FALSE,
  orientation = "cross-sectional",
  subset_biomarker_ids = NULL,
  subset_biomarker_groups = NULL,
  start_level = "none",
  settings = NULL
)

Arguments

chain

the full MCMC chain to generate antibody level trajectories from

infection_histories

the MCMC chain for infection histories

antibody_data

the data frame of antibody level data

individuals

the subset of individuals to generate credible intervals for

par_tab

the table controlling the parameters in the MCMC chain

antigenic_map

(optional) a data frame of antigenic x and y coordinates. Must have column names: x_coord; y_coord; inf_times. See example_antigenic_map

possible_exposure_times

(optional) if no antigenic map is specified, this argument gives the vector of times at which individuals can be infected

nsamp

number of samples to take from posterior

known_infection_history

nxm matrix of known infection histories

measurement_bias

default NULL, optional data frame giving the index of ‘rho' that each biomarker_id and biomarker_group which uses the measurement shift from from. eg. if there’s 6 circulation years and 3 strain clusters

p_ncol

integer giving the number of columns of subplots to create if using orientation = "longitudinal"

data_type

integer, currently accepting 1 or 2. Set to 1 for discretized, bounded data, or 2 for continuous, bounded data.

expand_to_all_times

TRUE/FALSE value. If TRUE, solves antibody level predictions for all possible infection times (i.e., for the range in possible_exposure_times). If left FALSE, then only solves for the infections times at which a antibody level against the circulating biomarker_id was measured in antibody_data.

orientation

either "cross-sectional" or "longitudinal"

subset_biomarker_ids

if not NULL, then a vector giving the entries of biomarker_id to include in the longitudinal plot

settings

if not NULL, list of serosolver settings as returned from the main serosolver function

Value

a ggplot2 object

See Also

Other infection_history_plots: calculate_infection_history_statistics(), plot_antibody_data(), plot_antibody_predictions(), plot_cumulative_infection_histories(), plot_estimated_antibody_model(), plot_individual_number_infections(), plot_infection_history_chains_indiv(), plot_infection_history_chains_time(), plot_posteriors_infhist(), plot_total_number_infections()

Examples

## Not run: 
data(example_theta_chain)
data(example_inf_chain)
data(example_antibody_data)
data(example_antigenic_map)
data(example_par_tab)

model_fit_plot <- plot_model_fits(example_theta_chain, example_inf_chain, example_antibody_data, 
                                           1:10, example_antigenic_map, example_par_tab,orientation="longitudinal")

## End(Not run)

seroanalytics/serosolver documentation built on Dec. 14, 2024, 5:33 a.m.